用于目标检测的范围自适应数据模式Autonomously Adapting Range Data Patterns for Object Detection |
|
课程网址: | http://videolectures.net/machine_varvadoukas_object_detection/ |
主讲教师: | Theodoros Varvadoukas |
开课单位: | 纽约大学 |
开课时间: | 2013-08-06 |
课程语种: | 英语 |
中文简介: | 我们提出了一种新的方法来识别激光测距数据中的模式,这种模式的执行与最新技术水平相当,同时需要最小的参数和监督。最重要的是,只有在机器人可以与现实世界中的物体(人类,在我们的实验中)互动的层面上,才需要监控。这是向自主认知系统迈出的重要一步,因为系统可以与这些对象交互,并自动收集其所需的所有监督,以适应其模型。 |
课程简介: | We present a novel approach to recognizing patterns in laser range data that performs on a par with the state of the art while at the same requiring minimal parameters and supervision. Most importantly, supervision is only needed at the level of real-world objects that a robot can interact with (humans, in our experiments). This is an important step towards autonomous cognitive systems, since the system can interact with such objects and autonomously collect all the supervision it needs in order to adapt its models. |
关 键 词: | 激光测距; 参数和监督; 自主认知系统 |
课程来源: | 视频讲座网 |
最后编审: | 2020-03-27:chenxin |
阅读次数: | 61 |