0


未来的愿景(第一部分)

Vision of the Future (Part 1)
课程网址: http://videolectures.net/mitworld_tonegawa_brenner_axel_flatow_vo...  
主讲教师: Sydney Brenner; Richard Axel; Ira Flatow; Susumu Tonegawa
开课单位: 麻省理工学院
开课时间: 2011-03-05
课程语种: 英语
中文简介:
有什么比一次强调该领域最令人兴奋的工作的旅行更好的方式来建立世界上首屈一指的神经科学研究中心。Susumu Tonegawa不仅提供了皮考尔研究所的历史和概况,还提供了他和同事实验室中关于记忆和认知的最新见解的概要。Morgan Sheng发现了如何在高分辨率下可视化神经元突触的分子结构;Matthew Wilson可以检测到在啮齿动物探索新环境时在空间记忆形成过程中神经元放电的模式,然后观察这些神经元以与动物睡眠相同的模式放电,这表明了一种机制。为了巩固记忆,Mark Bear正在深入研究脆弱x智力发育迟滞背后的分子机制,并探索药物矫正的可能性;Earl Miller与猴子的合作表明,学习可能首先发生在大脑更原始的区域,由大脑监控,然后由大脑批准。它的执行分支,前额皮质。Tonegawa已经将注意力集中在负责大脑海马体特定类型记忆回路的基因上。至于未来,Tonegawa呼吁基于全新原则的“新技术”,该技术可以分析单个突触水平下大脑中发生的事情,以及精神疾病和神经退行性疾病的新诊断和治疗方法。Sydney Brenner说,“基因型和表型之间的联系,特别是对于复杂的动物来说,仍然是生物学中最具挑战性的问题。”他说,还有一些深层次的智力问题需要解决,例如从接线图中计算行为,如果我们想了解基因型和表型之间的关系,就必须完成这些问题。大脑。理查德·阿克塞尔从上到下探索感知的机制。他问大脑是如何从不同的感觉输入中创造出自己的世界选择性图片的,这些感觉输入存在于“一些电活动、易兴奋的神经元”中。无论是视觉、听觉、触觉还是嗅觉,大脑都有特定于特定刺激的感受器。例如,不同的气味会激活不同的受体组合,进而激活大脑的特定部分。当果蝇闻到香蕉的味道时,一组神经元就会燃烧,而当苹果闻到的时候,另一组神经元就会燃烧。人类也是如此。但是我们的大脑如何以有意义的方式重建这些信息的问题还没有解决。Axel说,“感知只是一个假设,一个永远不会真正接近现实的最佳猜测。”因为“大脑没有眼睛”,Axel想,“谁看地图?”&
课程简介: What better way to inaugurate one of the world’s premiere neuroscience research centers than a tour highlighting some of the field’s most exciting work. Susumu Tonegawa provides not only a history and overview of the Picower Institute, but a rundown of the latest insights about memory and cognition emerging from his and colleagues’ labs. Morgan Sheng has figured out how to visualize at high resolution the molecular architecture of neuronal synapses; Matthew Wilson can detect a pattern of firing neurons in the formation of spatial memories as rodents explore a new environment, and then watch these neurons firing in the same pattern as the animals sleep—suggesting a mechanism for consolidating memory; Mark Bear is delving into the molecular mechanism behind fragile X mental retardation, and exploring possibilities for pharmacological correction; Earl Miller’s work with monkeys indicates that learning may happen first in a more primitive area of the brain, monitored and then ‘approved’ by the brain’s executive branch, the prefrontal cortex. And Tonegawa has zeroed in on the genes responsible for specific kinds of memory circuits in the brain’s hippocampus. As for the future, Tonegawa calls for “new technology, based on totally new principles, which can analyze what’s going on in the brain at the level of a single synapse,” as well as new diagnostic and therapeutic methods for psychiatric and neurodegenerative diseases. Sydney Brenner says the “connection between genotype and phenotype, especially for complex animals, will remain the most challenging problem in biology.” He says there are deep intellectual problems to be solved, such as computing behavior “from a wiring diagram,” which must be accomplished if we are to gain understanding of the brain. Richard Axel probes the mechanism of perception, from the bottom up and top down. He asks how the brain “creates its own selective pictures of the world” from different sensory input, which exist as “bits of electrical activity, excitable neurons.” Whether for vision, hearing, touch or smell, the brain has receptors that are specific for certain stimuli. Different odors, for example, will activate a different combination of receptors, which will in turn activate specific parts of the brain. When the fruit fly smells banana, one set of neurons fire, and when apple, quite another. The same is true for humans. But the problem of how our brains reconstruct this information in a meaningful way hasn’t been solved. Says Axel, “Perception is only a hypothesis, a best guess that never truly approaches reality.” Since “the brain does not have eyes,” wonders Axel, “who reads the map?”
关 键 词: 神经突触; 神经退行性疾病; 空间记忆; 分子机制; 感知机制
课程来源: 视频讲座网
最后编审: 2020-05-29:吴雨秋(课程编辑志愿者)
阅读次数: 50