谱聚类算法Spectral Clustering |
|
课程网址: | http://videolectures.net/mlcued08_azran_mcl/ |
主讲教师: | Arik Azran |
开课单位: | 剑桥大学 |
开课时间: | 2008-03-03 |
课程语种: | 英语 |
中文简介: | **机器学习教程讲座**光谱聚类是一种在数据中发现群结构的技术。它是基于将数据点作为连接图的节点来查看的,并通过将该图基于其光谱分解划分为具有某些期望属性的子图来找到簇。我这次演讲的计划是对主要的光谱聚类算法进行回顾,展示它们的能力和局限性,并对该方法何时能够成功提供一些见解。之前的知识都没有假设,任何对集群(或有趣的线性代数应用)感兴趣的人都可能会发现这篇文章很有趣。 |
课程简介: | **Machine Learning Tutorial Lecture** Spectral clustering is a technique for finding group structure in data. It is based on viewing the data points as nodes of a connected graph and clusters are found by partitioning this graph, based on its spectral decomposition, into subgraphs that posses some desirable properties. My plan for this talk is to give a review of the main spectral clustering algorithms, demonstrate their abilities and limitations and offer some insight into when the method can be expected to be successful. No previous knowledge is assumed, and anyone who is interested in clustering (or fun applications of linear algebra) might find this talk interesting. |
关 键 词: | 谱聚类算法; 通图; 分区图; 线性代数 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-03:wuyq |
阅读次数: | 69 |