0


药物活性的多标签预测

Multilabel prediction of drug activity
课程网址: http://videolectures.net/mlsb2010_rousu_mpo/  
主讲教师: Juho Rousu
开课单位: 赫尔辛基大学
开课时间: 2009-11-08
课程语种: 英语
中文简介:
机器学习在药物发现中变得越来越重要,在药物发现中寻找或设计可行的分子结构以达到治疗效果。特别是,昂贵的临床前体外和体内药物候选测试可以集中到最有前景的分子,如果在硅片模型中有准确的可用[7]。在过去的十年中,核心方法[3,7,2,1,10]已经成为模拟候选药物分子活性的有效方法。然而,一次只关注一个目标变量的分类方法并不适合处理大量目标细胞系的药物筛选应用。据我们所知,本文提出了第一种分子分类的多标签学习方法。我们的方法属于结构化的输出预测家族[6,8,4,5],其中图形模型和内核近年来已成功结合。在我们的方法中,药物靶点(癌细胞系)被组织成一个网络,药物分子用核来表示,并用识别的最大边缘训练来学习参数。我们在60个癌细胞系和4554个候选分子的数据集上证明了多标签分类方法的好处。
课程简介: Machine learning has become increasingly important in drug discovery where viable molecular structures are searched or designed for therapeutic efficacy. In particular, the costly pre-clinical in vitro and in vivo testing of drug candidates can be focused to the most promising molecules, if accurate in silico models are available [7]. During the last decade kernel methods [3, 7, 2, 1, 10] have emerged as an effective way for modelling the activity of candidate drug molecules. However, classification methods focusing on a single target variable at a time are not optimally suited to drug screening applications where a large number of target cell lines are to be handled. In this paper we propose, to our knowledge, the first multilabel learning approach for molecular classification. Our method belongs to the structured output prediction family [6, 8, 4, 5], where graphical models and kernels have been successfully married in recent years. In our approach, the drug targets (cancer cell lines) are organized in a network, drug molecules are represented by kernels and discriminative max-margin training is used to learn the parameters. We demonstrate the benefits of the multilabel classification approach on a dataset of 60 cancer cell lines and 4554 candidate molecules.
关 键 词: 机器学习; 药物分子; 药物靶标; 癌细胞系
课程来源: 视频讲座网
最后编审: 2020-05-29:吴雨秋(课程编辑志愿者)
阅读次数: 47