0


整合文献约束和信号网络的数据驱动推理

Integrating literature-constrained and data-driven inference of signalling networks
课程网址: http://videolectures.net/mlsb2012_eduati_integrating/  
主讲教师: Federica Eduati
开课单位: 帕多瓦大学
开课时间: 2012-10-23
课程语种: 英语
中文简介:
**动机:**最近实验方法的发展允许产生越来越大的信号转导数据集。可以采用两种主要方法从这些数据中推导出数学模型:将网络(例如从文献中获得)训练为数据,或仅从数据中推断网络。纯数据驱动方法的扩展性较差,解释能力有限,而文献约束方法不能处理不完整的网络。\\**结果:**我们提出了一种有效的方法,在R包cnorfeeder中实现,将文献约束和数据驱动方法相结合,从扰动中推断信号网络。N实验。我们的方法扩展了一个给定的网络,通过各种推理方法从数据中获得链接,并利用蛋白质物理相互作用的信息来指导和验证链接的集成。我们将cnorfeeder应用于生长和炎症信号网络,获得了一个适合人类肝癌Hepg2的模型,并提出了潜在的缺失途径。
课程简介: **Motivation:** Recent developments in experimental methods allo[url] generating increasingly larger signal transduction datasets. T[url]o main approaches can be taken to derive from these data a mathematical model: to train a net[url]ork (obtained e.g. from literature) to the data, or to infer the net[url]ork from the data alone. Purely data-driven methods scale up poorly and have limited interpretability, [url]hile literature-constrained methods cannot deal [url]ith incomplete net[url]orks.\\ **Results:** We present an efficient approach, implemented in the R package CNORfeeder, to integrate literature-constrained and data- driven methods to infer signalling net[url]orks from perturbation experiments. Our method extends a given net[url]ork [url]ith links derived from the data via various inference methods, and uses information on physical interactions of proteins to guide and validate the integration of links. We apply CNORfeeder to a net[url]ork of gro[url]th and inflammatory signaling, obtaining a model [url]ith superior data fit in the human liver cancer HepG2 and proposes potential missing path[url]ays.\\ **Availability:** CNORfeeder is in the process of being submitted to Bioconductor and in the meantime available at [url][url][url].ebi.ac.uk/~cokelaer/cnofeeder/.
关 键 词: 计算机科学; 网络分析; 生物学
课程来源: 视频讲座网
最后编审: 2020-05-26:毛岱琦(课程编辑志愿者)
阅读次数: 35