强化学习Reinforcement Learning |
|
课程网址: | http://videolectures.net/mlss05au_aberdeen_rl/ |
主讲教师: | Douglas Aberdeen |
开课单位: | 澳大利亚信息通信技术研究中心 |
开课时间: | 2007-04-25 |
课程语种: | 英语 |
中文简介: | 强化学习是指在只有弱绩效反馈的情况下学习良好的控制策略:偶尔会从导致良好绩效的事件中得到可能延迟的标量奖励。强化学习本质上是处理反馈系统而不是(数据、类)数据样本,它提供了比许多标准机器算法更灵活的控制框架。这些讲座将总结沿着3个轴进行的强化学习:在了解或不了解系统动力学的情况下进行学习。将状态值用作中间解决方案,或直接学习策略。学习时有或没有完全可观察的系统状态。 |
课程简介: | Reinforcement learning is about learning good control policies given only weak performance feedback: occasional scalar rewards that might be delayed from the events that led to good performance. Reinforcement learning inherently deals with feedback systems rather than (data, class) data samples, providing a more flexible control-like framework than many standard machine algorithms. These lectures will summarise reinforcement learning along 3 axes: # Learning with or without knowledge of the system dynamics. # Using state values as an intermediate solution, or learning a policy directly. # Learning with or without fully observable system states. |
关 键 词: | 强化学习; 数据样本; 机器算法; 系统动力学 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-15:yumf |
阅读次数: | 97 |