关于减少机器学习的教程Tutorial on Machine Learning Reductions |
|
课程网址: | http://videolectures.net/mlss05us_langford_mlr/ |
主讲教师: | John Langford |
开课单位: | 芝加哥丰田技术学院 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 在实际应用中,常见的分类问题有“重要性加权分类”、“成本敏感分类”、“强化学习”、“回归”等。这些问题中的许多可以通过简单的机器(约简)相互联系,将一种类型的问题转换为另一种类型的问题。找到从你的问题减少到一个更常见的问题允许重复使用简单的学习算法来解决相对复杂的问题。它还诱导一个组织解决学习问题,可以很容易地相互减少的问题是“附近”的,不能如此减少的问题并不接近。 |
课程简介: | There are several different classification problems commonly encountered in real world applications such as 'importance weighted classification', 'cost sensitive classification', 'reinforcement learning', 'regression' and others. Many of these problems can be related to each other by simple machines (reductions) that transform problems of one type into problems of another type. Finding a reduction from your problem to a more common problem allows the reuse of simple learning algorithms to solve relatively complex problems. It also induces an organization on learning problems — problems that can be easily reduced to each other are 'nearby' and problems which can not be so reduced are not close. |
关 键 词: | 重要性加权分类; 成本敏感的分类; 强化学习; 回归 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-01:吴雨秋(课程编辑志愿者) |
阅读次数: | 44 |