反学习Anti-Learning |
|
课程网址: | http://videolectures.net/mlss06au_kowalczyk_al/ |
主讲教师: | Adam Kowalczyk |
开课单位: | 澳大利亚信息通信技术研究中心 |
开课时间: | 2007-04-25 |
课程语种: | 英语 |
中文简介: | 生物领域对统计学习提出了新的挑战。在谈话中,我们将分析并从理论上解释一些反直觉的实验和理论发现,当从训练转向独立的测试数据(反学习现象)时,分类器决策可能发生系统性逆转。我们在自然数据和合成数据上都证明了这一点,并表明这与过度拟合不同。讨论的自然数据集将包括:从基因表达(用cDNA微阵列测量)预测对食管癌化疗的反应;预测影响酵母中芳基烃受体途径的基因。主要的综合分类问题将是从高维分布中提取的样本的近似值,为此将概述一个理论解释。 |
课程简介: | The Biological domain poses new challenges for statistical learning. In the talk we shall analyze and theoretically explain some counter-intuitive experimental and theoretical findings that systematic reversal of classifier decisions can occur when switching from training to independent test data (the phenomenon of anti-learning). We demonstrate this on both natural and synthetic data and show that it is distinct from overfitting. The natural datasets discussed will include: prediction of response to chemo-radio-therapy for esophageal cancer from gene expression (measured by cDNA-microarrays); prediction of genes affecting the aryl hydrocarbon receptor pathway in yeast. The main synthetic classification problem will be the approximation of samples drawn from high dimensional distributions, for which a theoretical explanation will be outlined. |
关 键 词: | 生物领域; 统计学习; 反学习; 基因表达; 基因微阵列; 高维分布 |
课程来源: | 视频讲座网 |
最后编审: | 2021-05-15:yumf |
阅读次数: | 85 |