0


从逆问题到模式识别的稀疏表示

Sparse Representations from Inverse Problems to Pattern Recognition
课程网址: http://videolectures.net/mlss09us_mallat_srippr/  
主讲教师: Stéphane Mallat
开课单位: 洛桑联邦高等工业学院
开课时间: 2009-07-30
课程语种: 英语
中文简介:
稀疏表示是许多低阶信号处理过程的核心,大多数模式识别算法都采用稀疏表示来减小搜索空间的维数。为模式识别应用程序构造稀疏表示需要考虑相对于物理变形(如旋转缩放或照明)的不变量。稀疏性、不变量性和稳定性是相互矛盾的要求,是开放问题的根源。针对超分辨率逆问题和模式识别,引入了局部线性向量空间的结构化稀疏表示。
课程简介: Sparse representations are at the core of many low-level signal processing procedures and are used by most pattern recognition algorithms to reduce the dimension of the search space. Structuring sparse representations fro pattern recognition applications requires taking into account invariants relatively to physical deformations such as rotation scaling or illumination. Sparsity, invariants and stability are conflicting requirements which is a source of open problems. Structured sparse representations with locally linear vector spaces are introduced for super-resolution inverse problems and pattern recognition.  
关 键 词: 稀疏表示; 信号处理程序; 模式识别; 线性向量空间; 超分辨率逆问题
课程来源: 视频讲座网
最后编审: 2020-05-29:吴雨秋(课程编辑志愿者)
阅读次数: 27