主动学习的理论,方法与应用Theory, Methods and Applications of Active Learning |
|
课程网址: | http://videolectures.net/mlss09us_nowak_castro_tmaal/ |
主讲教师: | Rui Castro; Robert Nowak |
开课单位: | 威斯康星大学 |
开课时间: | 2009-07-30 |
课程语种: | 英语 |
中文简介: | 传统的机器学习和统计推断方法都是被动的,因为所有的数据都是在分析之前以一种非自适应的方式收集的。人们可以预见,然而更积极的策略是,从以前收集的数据中收集的信息被用来指导新数据的选择。本文讨论了这种主动学习方法的新兴理论。我将证明数据分析和数据收集之间的反馈对于有效的学习和推理是至关重要的。本演讲将描述两个活跃的学习问题。首先,考虑二值预测(分类)问题,其中被动学习方法的预测误差比主动学习方法的预测误差大成指数。其次,我将讨论主动学习在噪声中稀疏向量恢复中的作用。我将证明,某些弱稀疏模式是被动测量无法察觉的,但可以使用选择性传感完美地恢复。 |
课程简介: | Traditional approaches to machine learning and statistical inference are passive, in the sense that all data are collected prior to analysis in a non-adaptive fashion. One can envision, however more active strategies in which information gleaned from previously collected data is used to guide the selection of new data. This talk discusses the emerging theory of such "active learning" methods. I will show that feedback between data analysis and data collection can be crucial for effective learning and inference. The talk will describe two active learning problems. First, I will consider binary-valued prediction (classification) problems, for which the prediction errors of passive learning methods can be exponentially larger than those of active learning. Second, I will discuss the role of active learning in the recovery of sparse vectors in noise. I will show that certain weak, sparse patterns are imperceptible from passive measurements, but can be recovered perfectly using selective sensing. |
关 键 词: | 机器学习; 统计推断; 二进制值预测; 稀疏向量; 选择性检测 |
课程来源: | 视频讲座网 |
最后编审: | 2020-05-29:吴雨秋(课程编辑志愿者) |
阅读次数: | 57 |