学习卷积特征层次的视觉识别Learning Convolutional Feature Hierarchies for Visual Recognition |
|
课程网址: | http://videolectures.net/nips2010_boureau_lcf/ |
主讲教师: | Y-Lan Boureau |
开课单位: | 纽约大学 |
开课时间: | 2011-03-25 |
课程语种: | 英语 |
中文简介: | 提出了一种无监督学习稀疏卷积特征多级层次的方法。虽然稀疏编码已经成为学习视觉特性的一种越来越流行的方法,但它通常是在补丁级别进行训练的。由于重叠的补丁是孤立编码的,所以将产生的过滤器卷积起来会产生高度冗余的代码。通过在大图像窗口上进行卷积训练,降低了相邻位置特征向量之间的冗余度,提高了整体表示的效率。除了线性译码器从稀疏特征重构图像外,我们的方法还训练了一个高效的前馈编码器,该编码器可以根据输入预测准稀疏特征。虽然基于补丁的培训很少产生除定向边缘探测器以外的任何东西,但我们表明,卷积培训产生高度多样化的滤波器,包括中心环绕滤波器、角检测器、交叉检测器和定向光栅检测器。我们表明,在多级卷积网络体系结构中使用这些滤波器可以提高许多视觉识别和检测任务的性能。 |
课程简介: | We propose an unsupervised method for learning multi-stage hierarchies of sparse convolutional features. While sparse coding has become an increasingly popular method for learning visual features, it is most often trained at the patch level. Applying the resulting filters convolutionally results in highly redundant codes because overlapping patches are encoded in isolation. By training convolutionally over large image windows, our method reduces the redudancy between feature vectors at neighboring locations and improves the efficiency of the overall representation. In addition to a linear decoder that reconstructs the image from sparse features, our method trains an efficient feed-forward encoder that predicts quasi-sparse features from the input. While patch-based training rarely produces anything but oriented edge detectors, we show that convolutional training produces highly diverse filters, including center-surround filters, corner detectors, cross detectors, and oriented grating detectors. We show that using these filters in multi-stage convolutional network architecture improves performance on a number of visual recognition and detection tasks. |
关 键 词: | 计算机科学; 机器学习; 无监督学习 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-02:毛岱琦(课程编辑志愿者) |
阅读次数: | 46 |