0


循环神经网络的完整表现可以支持持续的知觉

Over-complete representations on recurrent neural networks can support persistent percepts
课程网址: http://videolectures.net/nips2010_druckmann_ocr/  
主讲教师: Shaul Druckmann
开课单位: 霍华德休斯医学院
开课时间: 2011-01-12
课程语种: 英语
中文简介:
皮质神经网络的一个显著的方面是,从周围感觉器官到大量皮质神经元的输入通道数量相对较少,这是一种过度完整的表示策略。皮质神经元通过稀疏的侧突触网络相连。在这里,我们建议这样的架构可以增加一个传入刺激或感知的表示的持久性。我们证明,对于一个网络家族,每个神经元的接收场通过其传出连接重新表达,尽管活动发生变化,一个代表性的感知者仍然可以保持不变。我们称之为连接接受场复合(refire)网络的选择。稀疏的refire网络可以作为高维集成器和局部皮质电路的生物学上可信的模型。
课程简介: A striking aspect of cortical neural networks is the divergence of a relatively small number of input channels from the peripheral sensory apparatus into a large number of cortical neurons, an over-complete representation strategy. Cortical neurons are then connected by a sparse network of lateral synapses. Here we propose that such architecture may increase the persistence of the representation of an incoming stimulus, or a percept. We demonstrate that for a family of networks in which the receptive field of each neuron is re-expressed by its outgoing connections, a represented percept can remain constant despite changing activity. We term this choice of connectivity REceptive FIeld REcombination (REFIRE) networks. The sparse REFIRE network may serve as a high-dimensional integrator and a biologically plausible model of the local cortical circuit.
关 键 词: 皮质神经网络; 皮质神经元; 局部皮层电路模型
课程来源: 视频讲座网
最后编审: 2020-06-06:zyk
阅读次数: 60