一种用于计算取向优势的生物合理网络A biologically plausible network for the computation of orientation dominance |
|
课程网址: | http://videolectures.net/nips2010_muralidharan_bpn/ |
主讲教师: | Kritika Muralidharan |
开课单位: | 圣地亚哥大学 |
开课时间: | 2011-03-25 |
课程语种: | 英语 |
中文简介: | 将在给定图像位置上确定主方向作为一个决策理论问题。这就产生了一种新的方法来衡量给定方向的优势,类似于sift所用的方法。结果表明,新的测量方法可以用一个网络来实现v1标准神经生理学模型的操作序列来计算。因此,这种测量可以被看作是一种生物学上可信的SIFT版本,并被称为BIOSIFT。网络单元显示出v1神经元的商标特性,如交叉方向抑制、稀疏性和独立性。SIFT和生物视觉之间的联系为类似SIFT的特征的成功提供了理由,并加强了对比度标准化在计算机视觉中的重要性。我们通过用新的Biosift单元替换HMAX网络的GABOR单元来说明这一点。这表明,分类任务获得了显著的收益,从而在生物激励的网络模型中获得了最先进的性能,并且性能与最佳的非生物对象识别系统具有竞争力。 |
课程简介: | The determination of dominant orientation at a given image location is formulated as a decision-theoretic question. This leads to a novel measure for the dominance of a given orientation $\theta$, which is similar to that used by SIFT. It is then shown that the new measure can be computed with a network that implements the sequence of operations of the standard neurophysiological model of V1. The measure can thus be seen as a biologically plausible version of SIFT, and is denoted as bioSIFT. The network units are shown to exhibit trademark properties of V1 neurons, such as cross-orientation suppression, sparseness and independence. The connection between SIFT and biological vision provides a justification for the success of SIFT-like features and reinforces the importance of contrast normalization in computer vision. We illustrate this by replacing the Gabor units of an HMAX network with the new bioSIFT units. This is shown to lead to significant gains for classification tasks, leading to state-of-the-art performance among biologically inspired network models and performance competitive with the best non-biological object recognition systems. |
关 键 词: | 计算机科学; 计算生物学; 生物视觉 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-06:zyk |
阅读次数: | 30 |