0


能量相关成分分析的结构方程和分裂归一化

Structural equations and divisive normalization for energy-dependent component analysis
课程网址: http://videolectures.net/nips2011_hirayama_equations/  
主讲教师: Jun-ichiro Hirayama
开课单位: 京都大学
开课时间: 2012-09-06
课程语种: 英语
中文简介:
通过独立分量分析和相关方法估计的分量在实际数据中通常不独立。组件之间非线性依赖的一种非常常见的形式是它们的方差或能量的相关性。在这里,我们提出一个原则性的概率模型来模拟潜在变量之间的能量相关性。我们的两阶段模型包括潜伏期信号与观察到的信号(如ICA)的线性混合。主要的新的有限元是基于结构方程模型(SEM)的能量关联模型,特别是线性非高斯SEM。扫描电镜与除数归一化密切相关,有效地降低了能量相关性。我们新的两阶段模型可以同时估计线性混合和与能量相关性相关的相互作用,而无需借助似然函数近似或其他非原理方法。我们证明了我们的方法与合成数据集,自然图像和脑信号的适用性。
课程简介: Components estimated by independent component analysis and related methods are typically not independent in real data. A very common form of nonlinear dependency between the components is correlations in their variances or energies. Here, we propose a principled probabilistic model to model the energy- correlations between the latent variables. Our two-stage model includes a linear mixing of latent signals into the observed ones like in ICA. The main new fea- ture is a model of the energy-correlations based on the structural equation model (SEM), in particular, a Linear Non-Gaussian SEM. The SEM is closely related to divisive normalization which effectively reduces energy correlation. Our new two- stage model enables estimation of both the linear mixing and the interactions related to energy-correlations, without resorting to approximations of the likelihood function or other non-principled approaches. We demonstrate the applicability of our method with synthetic dataset, natural images and brain signals.
关 键 词: 图形模型; 计算机科学; 机器学习; 主成分分析
课程来源: 视频讲座网
最后编审: 2020-06-02:毛岱琦(课程编辑志愿者)
阅读次数: 57