有向图的嵌入:基于拉普拉斯型算子的连续极限算法Directed Graph Embedding: an Algorithm based on Continuous Limits of Laplacian-type Operators |
|
课程网址: | http://videolectures.net/nips2011_perrault_joncas_operators/ |
主讲教师: | Dominique Perrault-Joncas |
开课单位: | 华盛顿大学 |
开课时间: | 2012-09-06 |
课程语种: | 英语 |
中文简介: | 本文研究了在欧几里得空间中嵌入有向图同时保留方向信息的问题。我们将观察到的图形建模为一个具有向量场的流形的样本,并设计了一个分离和恢复该过程特征的算法:流形的几何结构、数据密度和向量场。该算法是由我们对拉普拉斯型算符及其作为流形上扩散源的连续极限的分析驱动的。对人工构造数据和实际数据的恢复算法进行了说明。 |
课程简介: | This paper considers the problem of embedding directed graphs in Euclidean space while retaining directional information. We model the observed graph as a sample from a manifold endowed with a vector field, and we design an algorithm that separates and recovers the features of this process: the geometry of the manifold, the data density and the vector field. The algorithm is motivated by our analysis of Laplacian-type operators and their continuous limit as generators of diffusions on a manifold. We illustrate the recovery algorithm on both artificially constructed and real data. |
关 键 词: | 计算机科学; 机器学习; 流形学习 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-02:毛岱琦(课程编辑志愿者) |
阅读次数: | 59 |