稀疏估计与结构化字典Sparse Estimation with Structured Dictionaries |
|
课程网址: | http://videolectures.net/nips2011_wipf_estimation/ |
主讲教师: | David P Wipf |
开课单位: | 微软公司 |
开课时间: | 2012-09-06 |
课程语种: | 英语 |
中文简介: | 在最近对稀疏估计算法的绝大多数研究中,性能都是使用理想或准理想字典(如随机高斯或傅立叶)进行评估的,这些字典的特点是单位$\ell_2$norm、不连贯的列或特征。但实际上,这些类型的字典只代表实际使用的字典的一个子集(主要局限于理想化的压缩传感应用)。相反,本文中的稀疏估计是在结构化字典的上下文中考虑的,这些字典可能显示任意列和/或行组之间的高度一致性。对稀疏惩罚回归模型进行了分析,目的是尽可能地寻找字典不变性能的状态。特别是,具有依赖字典的稀疏性惩罚的II型贝叶斯估计具有许多理想的不变性属性,与更传统的惩罚(如$\ell_1$norm)相比具有可证明的优势,特别是在现有理论恢复保证不再成立的领域。这可以转化为在应用中的改进性能,例如具有相关特征的模型选择、震源定位和具有受限测量方向的压缩传感。 |
课程简介: | In the vast majority of recent work on sparse estimation algorithms, performance has been evaluated using ideal or quasi-ideal dictionaries (e.g., random Gaussian or Fourier) characterized by unit $\ell_2$ norm, incoherent columns or features. But in reality, these types of dictionaries represent only a subset of the dictionaries that are actually used in practice (largely restricted to idealized compressive sensing applications). In contrast, herein sparse estimation is considered in the context of structured dictionaries possibly exhibiting high coherence between arbitrary groups of columns and/or rows. Sparse penalized regression models are analyzed with the purpose of finding, to the extent possible, regimes of dictionary invariant performance. In particular, a Type II Bayesian estimator with a dictionary-dependent sparsity penalty is shown to have a number of desirable invariance properties leading to provable advantages over more conventional penalties such as the $\ell_1$ norm, especially in areas where existing theoretical recovery guarantees no longer hold. This can translate into improved performance in applications such as model selection with correlated features, source localization, and compressive sensing with constrained measurement directions. |
关 键 词: | 稀疏估计算法; 结构字典; 稀疏惩罚回归模型; 贝叶斯估计 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-11:liush |
阅读次数: | 56 |