基于广义线性模型的图形化模型Graphical Models via Generalized Linear Models |
|
课程网址: | http://videolectures.net/nips2012_yang_models/ |
主讲教师: | Eunho Yang |
开课单位: | 德克萨斯大学 |
开课时间: | 2013-01-16 |
课程语种: | 英语 |
中文简介: | 无向图形模型或马尔可夫网络,如高斯图形模型和伊辛模型,在各种应用中都很受欢迎。然而,在许多情况下,数据可能不会遵循这些模型假定的高斯或二项式分布。我们引入了一类新的基于广义线性模型(GLM)的图形模型,假设节点条件分布是由指数族产生的。我们的模型允许我们通过拟合惩罚的glms为每个节点选择邻域来估计一类广泛的指数分布的网络,如泊松分布、负二项式分布和指数分布。本文的一个主要贡献是严格的统计分析表明,在高概率情况下,我们的图形模型的邻域可以精确恢复。我们提供了通过我们的GLM图形模型学习的高通量基因组网络的例子,用于多项式和泊松分布数据。 |
课程简介: | Undirected graphical models, or Markov networks, such as Gaussian graphical models and Ising models enjoy popularity in a variety of applications. In many settings, however, data may not follow a Gaussian or binomial distribution assumed by these models. We introduce a new class of graphical models based on generalized linear models (GLM) by assuming that node-wise conditional distributions arise from exponential families. Our models allow one to estimate networks for a wide class of exponential distributions, such as the Poisson, negative binomial, and exponential, by fitting penalized GLMs to select the neighborhood for each node. A major contribution of this paper is the rigorous statistical analysis showing that with high probability, the neighborhood of our graphical models can be recovered exactly. We provide examples of high-throughput genomic networks learned via our GLM graphical models for multinomial and Poisson distributed data. |
关 键 词: | 图形模型; 马尔可夫网络; 广义线性模型; 指数分布 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-06:zyk |
阅读次数: | 60 |