新科-一种学习稀疏逆协方差矩阵的有效方法SINCO - An Efficient Greedy Method for Learning Sparse INverse COvariance Matrix |
|
课程网址: | http://videolectures.net/nipsworkshops09_scheinberg_egm/ |
主讲教师: | Katya Scheinberg |
开课单位: | 里海大学 |
开课时间: | 2010-01-19 |
课程语种: | 英语 |
中文简介: | 在此,我们提出一个简单的贪婪算法(sinco)来解决这个优化问题。Sinco以贪婪的方式使用坐标提升来解决最初的问题(与它的前辈,如Covesl[10]和Glasso[4]不同),从而自然地保持解决方案的稀疏性。我们的经验结果表明,Sinco比Glasso[4]具有更好的降低误报率的能力(同时在网络足够稀疏时保持类似的真阳性率),因为其贪婪的增量性质。 |
课程简介: | Herein, we propose a simple greedy algorithm (SINCO) for solving this optimization problem. SINCO solves the primal problem (unlike its predecessors such as COVSEL [10] and glasso [4]), using coordinate ascent, in a greedy manner, thus naturally preserving the sparsity of the solution. As demonstrated by our empirical results, SINCO has better capability in reducing the false-positive error rate (while maintaining similar true positive rate when networks are sufficiently sparse) than glasso [4], because of its greedy incremental nature. |
关 键 词: | 优化问题; 新科; 假阳性错误率; 稀疏性; 渐进性 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-02:张荧(课程编辑志愿者) |
阅读次数: | 48 |