首页概率论
   首页计算数学
   首页函数论
0


新科-一种学习稀疏逆协方差矩阵的有效方法

SINCO - An Efficient Greedy Method for Learning Sparse INverse COvariance Matrix
课程网址: http://videolectures.net/nipsworkshops09_scheinberg_egm/  
主讲教师: Katya Scheinberg
开课单位: 里海大学
开课时间: 2010-01-19
课程语种: 英语
中文简介:
在此,我们提出一个简单的贪婪算法(sinco)来解决这个优化问题。Sinco以贪婪的方式使用坐标提升来解决最初的问题(与它的前辈,如Covesl[10]和Glasso[4]不同),从而自然地保持解决方案的稀疏性。我们的经验结果表明,Sinco比Glasso[4]具有更好的降低误报率的能力(同时在网络足够稀疏时保持类似的真阳性率),因为其贪婪的增量性质。
课程简介: Herein, we propose a simple greedy algorithm (SINCO) for solving this optimization problem. SINCO solves the primal problem (unlike its predecessors such as COVSEL [10] and glasso [4]), using coordinate ascent, in a greedy manner, thus naturally preserving the sparsity of the solution. As demonstrated by our empirical results, SINCO has better capability in reducing the false-positive error rate (while maintaining similar true positive rate when networks are sufficiently sparse) than glasso [4], because of its greedy incremental nature.
关 键 词: 优化问题; 新科; 假阳性错误率; 稀疏性; 渐进性
课程来源: 视频讲座网
最后编审: 2020-06-02:张荧(课程编辑志愿者)
阅读次数: 48