MKL结构化的正则化Structured Regularization for MKL |
|
课程网址: | http://videolectures.net/nipsworkshops2010_obozinski_srf/ |
主讲教师: | Guillaume Obozinski |
开课单位: | 巴黎高等商学院 |
开课时间: | 2011-01-12 |
课程语种: | 英语 |
中文简介: | 引入多核学习后,很快就发现1-正则化及其群延拓与MKL之间存在对偶关系。因此,可以认为mkl为函数空间提供了稀疏性的扩展。然而,这种扩展并不局限于_1-范数。例如,对_p规范的扩展导致几种形式的非稀疏MKL。在本文中,我们将讨论如何在MKL框架中一般地引入结构化稀疏性,现有的算法方法如何扩展到这种情况,以及这如何自然地导致结构化功能空间的概念。 |
课程简介: | It was realized soon after the introduction of Multiple Kernel Learning that ℓ1 - regularization and its groupwise extension are related to MKL by dualization. MKL can therefore be viewed as providing an extension of sparsity to function spaces. However, this extension is not limited ℓ1 - norm. For example, extensions to ℓp norms leads to several forms of non-sparse MKL. In this talk, we will discuss how structured sparsity can generically be introduced in the MKL framework, how existing algorithmic approaches extend to this case and how this leads naturally to the notion of structured functional spaces. |
关 键 词: | 正则化; MKL; 结构化稀疏性; 结构功能空间 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-03:毛岱琦(课程编辑志愿者) |
阅读次数: | 39 |