发现临床数据库的潜在结构Discovering Latent Structure in Clinical Databases |
|
课程网址: | http://videolectures.net/nipsworkshops2011_davis_databases/ |
主讲教师: | Jesse Davis |
开课单位: | 无 |
开课时间: | 2012-01-23 |
课程语种: | 英语 |
中文简介: | 统计关系学习允许算法在给定的域内同时对复杂结构和不确定性进行推理。在分析这些域时,一个常见的挑战是数据中存在潜在结构。我们提出了一种新的算法,自动分组在一个领域中的不同对象,以发现潜在的结构,包括一个层次结构,甚至异序。我们根据经验评估了我们的算法在两个大型现实任务中的作用,目标是预测患者是否会对药物产生不良反应。我们发现,所提出的方法产生的模型比基线方法更准确。此外,我们发现有趣的潜在结构被认为是相关的和有趣的医学合作者。 |
课程简介: | Statistical relational learning allows algorithms to simultaneously reason about complex structure and uncertainty with a given domain. One common challenge when analyzing these domains is the presence of latent structure within the data. We present a novel algorithm that automatically groups together different objects in a domain in order to uncover latent structure, including a hierarchy or even heterarchy. We empirically evaluate our algorithm on two large real-world tasks where the goal is to predict whether a patient will have an adverse reaction to a medication. We found that the proposed approach produced a more accurate model than the baseline approach. Furthermore, we found interesting latent structure that was deemed to be relevant and interesting by a medical collaborator. |
关 键 词: | 统计关系学习; 潜在结构; 不良反应 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-11:liush |
阅读次数: | 69 |