首页概率论
   首页函数论
   首页数学分析
0


内核的贝叶斯规则

Kernel Bayes Rule
课程网址: http://videolectures.net/nipsworkshops2012_fukumizu_bayes/  
主讲教师: Kenji Fukumizu
开课单位: 日本统计数理研究所
开课时间: 2013-01-06
课程语种: 英语
中文简介:
在再现核希尔伯特空间概率表示的基础上,提出了一种基于非参数核的贝叶斯规则实现方法。概率的唯一特征是Rkhs的正则映射的平均值。先验概率和条件概率用经验样本的Rkhs函数表示:这些量不需要显式参数模型。后面同样是加权样本的Rkhs平均值。推导了后验函数的期望估计量,并给出了一致性率。介绍了核贝叶斯规则的一些典型应用,包括无似然Baysian计算和非参数状态空间模型滤波。
课程简介: A nonparametric kernel-based method for realizing Bayes’ rule is proposed, based on representations of probabilities in reproducing kernel Hilbert spaces. Probabilities are uniquely characterized by the mean of the canonical map to the RKHS. The prior and conditional probabilities are expressed in terms of RKHS functions of an empirical sample: no explicit parametric model is needed for these quantities. The posterior is likewise an RKHS mean of a weighted sample. The estimator for the expectation of a function of the posterior is derived, and rates of consistency are shown. Some representative applications of the kernel Bayes’ rule are presented, including Baysian computation without likelihood and filtering with a nonparametric state-space model.  
关 键 词: 贝叶斯规则; 条件概率; 样本空间函数; 平均加权样本
课程来源: 视频讲座网
最后编审: 2020-05-22:王淑红(课程编辑志愿者)
阅读次数: 291