高维数据的分类:高维判别分析Classification of high dimensional data: High Dimensional Discriminant Analysis |
|
课程网址: | http://videolectures.net/slsfs05_bouveyron_hdda/ |
主讲教师: | Charles Bouveyron |
开课单位: | 美国IMAG工业公司 |
开课时间: | 2007-02-25 |
课程语种: | 英语 |
中文简介: | 提出了一种新的判别分析方法,即高维判别分析法。我们的方法是基于高维数据存在于不同的低维子空间的假设。因此,hdda独立地减少每个类的维数,并将类条件协方差矩阵正则化,以便使高斯框架适应高维数据。这种正则化是通过假设类在其特征空间是球形的来实现的。将HDDA应用于实际图像中的目标识别,并将其性能与经典的分类方法进行了比较。 |
课程简介: | We propose a new method of discriminant analysis, called High Dimensional Discriminant Analysis (HHDA). Our approach is based on the assumption that high dimensional data live in di erent subspaces with low dimensionality. Thus, HDDA reduces the dimension for each class independently and regularizes class conditional covariance matrices in order to adapt the Gaussian framework to high dimensional data. This regularization is achieved by assuming that classes are spherical in their eigenspace. HDDA is applied to recognize objects in real images and its performances are compared to classical classi cation methods. |
关 键 词: | 计算机科学; 机器学习; 监督学习; 操作研究 |
课程来源: | 视频讲座网 |
最后编审: | 2020-06-12:yumf |
阅读次数: | 91 |