0


无监督学习

Unsupervised learning
课程网址: http://videolectures.net/ssll09_schuurmans_unle/  
主讲教师: Dale Schuurmans
开课单位: 艾伯塔大学
开课时间: 2009-04-01
课程语种: 英语
中文简介:
他的教程的第一部分将讨论无监督、半监督和部分监督的学习。对于支持向量机、最大边缘马尔可夫网络、对数线性模型和贝叶斯网络的无监督和半监督训练,将给出凸松弛。然后将引入部分监督训练的概念,并为训练多层感知器和深层网络开发凸松弛。将讨论这些方法与经典训练算法(em、viterbi em和自监督训练)之间的关系。还将考虑凸松弛的限制。然后,本教程将介绍扩展此类训练算法的方法。最后,给出了一些简单的近似界,以及一个基本的自监督训练泛化理论。
课程简介: The first part of his tutorial will discuss un-supervised, semi-supervised and partially-supervised learning. Convex relaxations will be presented for un-supervised and semi-supervised training of support vector machines, max-margin Markov networks, log-linear models and Bayesian networks. The concept of partially-supervised training will then be introduced, with convex relaxations developed for training multi-layer perceptrons and deep networks. Relationships of these methods to classical training algorithms (EM, Viterbi-EM, and self-supervised training) will be discussed. Limitations of convex relaxations will also be considered. The tutorial will then present methods for scaling up such training algorithms. Finally, some simple approximation bounds will be introduced, along with a rudimentary generalization theory for self-supervised training.
关 键 词: 计算机科学; 机器学习; 无监督学习
课程来源: 视频讲座网
最后编审: 2020-06-12:yumf
阅读次数: 67