0


集中不等式

Concentration Inequalities
课程网址: http://videolectures.net/uai08_lugosi_ci/  
主讲教师: Gabor Lugosi
开课单位: 蓬佩法布拉大学
开课时间: 2008-07-30
课程语种: 英语
中文简介:
在这篇关于集中不等式的讨论中,我们指的是约束独立随机变量函数偏离其平均值的不等式。由于它们的通用性和优雅性,许多这样的结果已经在许多领域作为标准工具,包括统计学习理论、概率组合学和Banach空间的几何。为了说明一些基本思想,我们首先展示了几种独立随机变量的一般函数的方差的简单边界方法。我们展示了如何在统计学习理论的几个关键量上使用这些不等式。在过去的二十年中,已经引入了一些技术来将这种方差不等式改进为指数尾不等式。我们关注一种特别优雅和有效的方法,即所谓的熵方法,它基于对数Sobolev不等式及其修正。类似的思想出现在数学的各个领域,包括离散和高斯等周问题,以及马尔可夫链混合时间的估计。我们打算为其中的一些联系提供一些线索。特别地,我们提到了一些与布尔函数变量、相变和阈值现象的影响密切相关的结果。
课程简介: In this talk by concentration inequalities we mean inequalities that bound the deviations of a function of independent random variables from its mean. Due to their generality and elegance, many of such results have served as standard tools in a variety of areas, including statistical learning theory, probabilistic combinatorics, and the geometry of Banach spaces. To illustrate some of the basic ideas, we start by showing simple ways of bounding the variance of a general function of several independent random variables. We show how to use these inequalities on a few key quantities in statistical learning theory. In the past two decades several techniques have been introduced to improve such variance inequalities to exponential tail inequalities. We focus on a particularly elegant and effective method, the so-called "entropy method", based on logarithmic Sobolev inequalities and their modifications. Similar ideas appear in a variety of areas of mathematics, including discrete and Gaussian isoperimetric problems, and estimation of mixing times of Markov chains. We intend to shed some light to some of these connections. In particular, we mention some closely related results on influences of variables of Boolean functions, phase transitions, and threshold phenomena.
关 键 词: 计算机科学; 人工智能; 不等式
课程来源: 视频讲座网
最后编审: 2020-06-03:魏雪琼(课程编辑志愿者)
阅读次数: 73