0


网络广告:利用理论与数据优化交易市场

An Optimization Framework for Query Recommendation
课程网址: http://videolectures.net/wsdm2010_castillo_apf/  
主讲教师: Carlos Castillo
开课单位: 加泰罗尼亚技术中心
开课时间: 2010-10-12
课程语种: 英语
中文简介:
查询推荐是现代搜索引擎不可或缺的一部分。查询推荐的目的是方便用户搜索信息。查询建议还允许用户探索与其信息需求相关的概念。本文对查询推荐问题进行了形式化处理。在我们的框架中,我们通过概率重组图或查询流图来建模用户的查询行为。CIKM 2008。用户提交的一系列查询可以被视为此图上的路径。为查询分配分数值允许我们定义适当的实用程序函数,并考虑通过查询流图上的重新公式化路径实现的预期实用程序。提供建议可以被视为在查询流程图中添加快捷方式,从而“推动”用户的重新编制路径,这样用户更可能使用预期更大的实用程序遵循路径。我们将详细讨论拟议框架中出现的最重要的问题。特别是,我们提供了有意义的效用函数优化的例子,我们讨论了如何估计建议对重构概率的影响,我们解决了我们所考虑的优化问题的复杂性,我们提出了有效的算法解决方案,并用广泛的经验验证了我们的模型和算法。产额。我们的技术可以应用于其他场景,其中用户行为可以被建模为马尔可夫过程。
课程简介: Query recommendation is an integral part of modern search engines. The goal of query recommendation is to facilitate users while searching for information. Query recommendation also allows users to explore concepts related to their information needs. In this paper, we present a formal treatment of the problem of query recommendation. In our framework we model the querying behavior of users by a probabilistic reformulation graph, or query-flow graph [Boldi et al. CIKM 2008]. A sequence of queries submitted by a user can be seen as a path on this graph. Assigning score values to queries allows us to define suitable utility functions and to consider the expected utility achieved by a reformulation path on the query-flow graph. Providing recommendations can be seen as adding shortcuts in the query-flow graph that “nudge” the reformulation paths of users, in such a way that users are more likely to follow paths with larger expected utility. We discuss in detail the most important questions that arise in the proposed framework. In particular, we provide examples of meaningful utility functions to optimize, we discuss how to estimate the effect of recommendations on the reformulation probabilities, we address the complexity of the optimization problems that we consider, we suggest efficient algorithmic solutions, and we validate our models and algorithms with extensive experimentation. Our techniques can be applied to other scenarios where user behavior can be modeled as a Markov process.
关 键 词: 计算机科学; 数据挖掘; 优化交易市场
课程来源: 视频讲座网
最后编审: 2020-06-11:liush
阅读次数: 40