在推特上基于内容分析的兴趣度A Content-based Analysis of Interestingness on Twitter |
|
课程网址: | http://videolectures.net/acmwebsci2011_kunegis_interestingness/ |
主讲教师: | Jérôme Kunegis |
开课单位: | 科布伦茨兰道大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 在微博网站twitter上,用户可以将收到的任何信息转发给所有的追随者。这被称为转发,通常是在用户发现某条消息特别有趣并且值得与他人共享时完成的。因此,转发反映了twitter社区在全球范围内认为有趣的内容,并且可以作为有趣的函数来生成一个模型来描述转发的基于内容的特性。在本文中,我们分析了一组基于内容的高级别和低级别特性,这些特性是基于几个Twitter消息的大型集合。我们训练一个预测模型来预测一个给定的tweet,根据它的内容,它被转发的可能性。从模型学习到的参数中,我们推断出哪些有影响的内容特征有助于再次传播的可能性。因此,我们深入了解了什么使得Twitter上的信息值得转发,因此也很有趣。 |
课程简介: | On the microblogging site Twitter, users can forward any message they receive to all of their followers. This is called a retweet and is usually done when users find a message particularly interesting and worth sharing with others. Thus, retweets reflect what the Twitter community considers interesting on a global scale, and can be used as a function of interestingness to generate a model to describe the content-based characteristics of retweets. In this paper, we analyze a set of high- and low-level content-based features on several large collections of Twitter messages. We train a prediction model to forecast for a given tweet its likelihood of being retweeted based on its contents. From the parameters learned by the model we deduce what are the influential content features that contribute to the likelihood of a retweet. As a result we obtain insights into what makes a message on Twitter worth retweeting and, thus, interesting. |
关 键 词: | 推特社会; 可能性预测; 内容特征 |
课程来源: | 视频讲座网 |
最后编审: | 2019-11-17:cwx |
阅读次数: | 38 |