稀疏几何超分辨Sparse Geometric Super-Resolution |
|
课程网址: | http://videolectures.net/etvc08_mallat_sgsr/ |
主讲教师: | Stéphane Mallat |
开课单位: | 巴黎综合理工大学 |
开课时间: | 2008-12-05 |
课程语种: | 英语 |
中文简介: | 从部分噪声或降级数据中恢复的最大信号分辨率是多少?这个逆问题是一个中心问题,从医学到卫星成像,从地球物理地震到互联网视频的高清电视可视化。利用";几何规律";,无论它是什么意思,都可以提高图像分辨率。对于相对测量系统而言具有非相干稀疏表示的信号,确实可以实现超分辨率。对于图像和视频,需要在冗余的波形字典中构造适合于几何图像结构的稀疏表示。讨论了冗余字典中的信号恢复问题,并给出了在图像超分辨率频带字典中的应用。 |
课程简介: | What is the maximum signal resolution that can be recovered from partial noisy or degraded data ? This inverse problem is a central issue, from medical to satellite imaging, from geophysical seismic to HDTV visualization of Internet videos. Increasing an image resolution is possible by taking advantage of "geometric regularities", whatever it means. Super-resolution can indeed be achieved for signals having a sparse representation which is "incoherent" relatively to the measurement system. For images and videos, it requires to construct sparse representations in redundant dictionaries of waveforms, which are adapted to geometric image structures. Signal recovery in redundant dictionaries is discussed, and applications are shown in dictionaries of bandlets for image super-resolution. |
关 键 词: | 图像分析; 计算机科学; 计算机图形学 |
课程来源: | 视频讲座网 |
最后编审: | 2020-09-21:heyf |
阅读次数: | 38 |