0


基于模糊逻辑的偏瘫患者步态分类

Fuzzy Logic Based Gait Classification for Hemiplegic Patients
课程网址: http://videolectures.net/ida07_yardimci_flbgc/  
主讲教师: Ahmet Yardimci
开课单位: 克德尼兹大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
在这项研究中,首先使用模糊逻辑分类系统来区分健康受试者和患者,而不是使用布伦斯特罗姆阶段进行分类。决策分为两个阶段:步态信号的特征提取和使用tsukamato型推理方法的模糊逻辑分类系统。根据我们的信号特征提取研究,我们重点研究了步态信号的时间事件和对称特征。所开发的系统有六个输入,其中四个输入用于时态特征评估规则块,两个输入用于对称特征评估规则块。我们的模拟测试结果表明,所提出的系统正确地将100%的受试者分类为患者和健康老年人。相关系数为0.85,用于对受试者进行分级,以纠正布伦斯特罗分期。结果表明,根据偏瘫的严重程度对患者进行线性分类变得越来越困难。
课程简介: In this study a fuzzy logic classification system was used first to discriminate healthy subjects from patients rather than classifying those using Brunnstrom stages. Decision making was performed in two stages: feature extraction of gait signals and the fuzzy logic classification system which is used Tsukamato-type inference method. According to our signal feature extraction studies, we focused on temporal events and symetrical features of gait signal. Developed system has six inputs while four of them for temporal features evaluation rule block and two of them symmetrical features evaluation rule block. Our simulation test results showed that proposed system classify correctly 100% of subjects as patient and healthy elderly. The correlation coefficient was found 0.85 for classification to subjects to correct Brunnstrom stages. The results show that classifying patients becomes increasingly difficult linearly according to hemiplegia’s severity.
关 键 词: 模糊逻辑分类系统; 特征提取; 步态信号对称特征
课程来源: 视频讲座网
最后编审: 2019-11-18:cwx
阅读次数: 38