均匀尺度下的图案检测Detecting Motifs Under Uniform Scaling |
|
课程网址: | http://videolectures.net/kdd07_yankov_dmuu/ |
主讲教师: | Dragomir Yankov |
开课单位: | 加利福尼亚大学 |
开课时间: | 2007-08-14 |
课程语种: | 英语 |
中文简介: | 时间序列图案是在数据中发现的近似重复模式。这些主题在许多数据挖掘算法中都具有实用性,包括规则发现、新颖性检测、汇总和聚类。自问题正式化和引入高效线性时间算法以来,Motif发现已成功应用于医学、运动捕捉、机器人和气象学等多个领域。在这项工作中,我们表明,以前大多数时间序列主题的应用都受到定义的脆弱性,甚至均匀缩放的微小变化,模式发展的速度的严重限制。我们介绍了一种新的算法,它可以发现具有不变性的时间序列基序,使其具有均匀的标度,并表明它在几个重要领域产生了客观上优越的结果。除了比所有其他Motif发现算法更通用之外,我们工作的另一个贡献是它比以前的方法更简单,特别是我们大大减少了需要指定的参数数量。 |
课程简介: | Time series motifs are approximately repeated patterns found within the data. Such motifs have utility for many data mining algorithms, including rule-discovery, novelty-detection, summarization and clustering. Since the formalization of the problem and the introduction of efficient linear time algorithms, motif discovery has been successfully applied to many domains, including medicine, motion capture, robotics and meteorology. In this work we show that most previous applications of time series motifs have been severely limited by the definition’s brittleness to even slight changes of uniform scaling, the speed at which the patterns develop. We introduce a new algorithm that allows discovery of time series motifs with invariance to uniform scaling, and show that it produces objectively superior results in several important domains. Apart from being more general than all other motif discovery algorithms, a further contribution of our work is that it is simpler than previous approaches, in particular we have drastically reduced the number of parameters that need to be specified. |
关 键 词: | 时间序列图案; 数据挖掘算法; 线性时间算法 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-30:nkq |
阅读次数: | 38 |