0


函数空间中结构信息的提升:图分类的应用

Boosting with Structure Information in the Functional Space: an Application to Graph Classification
课程网址: http://videolectures.net/kdd2010_fei_bsi/  
主讲教师: Hongliang Fei
开课单位: 堪萨斯大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
Boosting是一种非常成功的分类算法,它产生“弱”分类器(又称基础学习器)的线性组合来获得高质量的分类模型。本文提出了一种新的增强算法,其中基本学习者在函数空间中具有结构关系。尽管这些关系是通用的,但我们的工作特别受到基于模式的半结构化数据分类这一新兴话题的推动,包括图形。为了有效地结合结构信息,我们设计了一个通用模型,其中我们使用无向图来捕获基于子图的基础学习者之间的关系。在我们的方法中,我们结合了L_1范数和基于拉普拉斯的L_2范数惩罚以及Logit Boost的Logt损失函数。在该方法中,我们在由基函数跨越的函数空间中加强了模型的稀疏性和光滑性。对于新的增压公式,我们导出了基于坐标体元的有效优化算法,并从理论上证明了它对邻近空间或重叠特征具有自然分组效应。通过综合实验研究,验证了所提出学习方法的有效性。
课程简介: Boosting is a very successful classification algorithm that produces a linear combination of "weak" classifiers (a.k.a. base learners) to obtain high quality classification models. In this paper we propose a new boosting algorithm where base learners have structure relationships in the functional space. Though such relationships are generic, our work is particularly motivated by the emerging topic of pattern based classification for semi-structured data including graphs. Towards an efficient incorporation of the structure information, we have designed a general model where we use an undirected graph to capture the relationship of subgraph-based base learners. In our method, we combine both L_1 norm and Laplacian based L_2 norm penalty with Logit loss function of Logit Boost. In this approach, we enforce model sparsity and smoothness in the functional space spanned by the basis functions. We have derived efficient optimization algorithms based on coordinate decent for the new boosting formulation and theoretically prove that it exhibits a natural grouping effect for nearby spatial or overlapping features. Using comprehensive experimental study, we have demonstrated the effectiveness of the proposed learning methods.
关 键 词: 计算机科学; 优化算法; 半结构化数据
课程来源: 视频讲座网
最后编审: 2019-11-18:cwx
阅读次数: 25