0


基于大规模数据挖掘的商业广告量化与量化

The quantification of advertising and lessons from building a business based on large scale data mining
课程网址: http://videolectures.net/kdd2010_feldman_qalbb/  
主讲教师: Konrad Feldman
开课单位: Quantcast公司
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
随着电子通信、媒体和商业日益渗透到现代生活的方方面面,通过数据挖掘实现消费者体验的实时个性化成为现实。利用机器学习和统计方法对消费者的兴趣、行为和购买习惯进行有效的分类、预测和变化建模,从而提高效率、洞察力和消费者相关性,这是前所未有的。互联网带来了广告业的快速发展。互联网上关于行为的一切都可以量化,对行为的反应可以实时发生。这种与用户的动态互动创造了更好地理解个人从对产品的认知到考虑购买、到意向以及最终销售给营销人员的方式的机会。当营销人员能够回答这个问题时,“这些电视广告是否导致消费者更换洗发水品牌?”他们可以模拟行为变化并相应地调整营销策略。世界上万亿美元的营销预算如何使用,这一转变的基础是前所未有的规模的交易数据,为软件创造了新的挑战,这些软件必须解释这一流,并每秒钟进行数十次甚至数十万次实时决策。我将参考2006年9月推出的QuantCast,探讨媒体消费建模、广告响应和媒体机会实时评估方面的进展,QuantCast目前每天解释超过100亿条新的数字媒体消费记录。我们将研究将机器学习应用于非搜索广告的挑战,并在此过程中探索业务环境的创建—组织、基础设施、工具、流程(和成本考虑)–,在此环境中,科学家可以快速开发新的Petabyte级算法方法,并将其快速迁移到现实中。-为营销人员、出版商和消费者提供时间制作和完全定制的体验。
课程简介: As electronic communication, media and commerce increasingly permeate every aspect of modern life, real-time personalization of consumer experience through data-mining becomes practical. Effective classification, prediction and change modeling of consumer interests, behaviors and purchasing habits using machine learning and statistical methods drives efficiency, insights and consumer relevance that were never before possible. The internet has brought on a rapid evolution in advertising. Everything about behavior on the internet can be quantified and responses to behavior can occur in real time. This dynamic interaction with the user has created opportunities to better understand the way in which individuals move from awareness of a product to considering a purchase, through to intent and ultimately a sale for the marketer. When a marketer can answer the question „did those TV ads cause consumers to switch shampoo brands?‟ they can model behavior change and adjust marketing strategies accordingly. Underpinning this shift in how the world‟s trillion dollar marketing budget is spent is transactional data on an unprecedented scale, creating new challenges for software that must interpret this stream and make real time decisions tens, even hundreds of thousands of times every second. I will explore advances in modeling media consumption, advertising response and the real-time evaluation of media opportunities through reference to Quantcast, a business launched in September 2006 which today interprets in excess of 10 billion new digital media consumption records every day. We will examine the challenges of applying machine learning to non-search advertising and in doing so explore the creation of business environments – organization, infrastructure, tools, processes (and costs considerations) – in which scientists can quickly develop new petabyte scale algorithmic approaches, migrate them rapidly to real-time production and deliver fully customized experiences for marketers, publishers and consumers alike.
关 键 词: 计算机科学; 数据挖掘; 统计方法; 机器学习
课程来源: 视频讲座网
最后编审: 2019-11-22:cwx
阅读次数: 26