0


麻省理工学院跨学科研究:不寻常的联系

Interdisciplinary Research at MIT: Making Uncommon Connections
课程网址: http://videolectures.net/mitworld_gast_williams_chisholm_bawendi_...  
主讲教师: Penny Chisholm; Slocum Alexander H; Rosalind Williams; Alice Gast; Bawendi Moungi G
开课单位: 利哈伊大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
Rosalind Williams指出:“麻省理工的多学科森林:从树枝到树冠,麻省理工19世纪的创立者们震惊地预见到了20世纪科技的融合,他们强调自然法和应用工程的知识。威廉斯说,这两个不同学科之间的联系是“历史上的新事物”。科学理解以前是“贵族化、精英化、知识化和投机性的”。技术是“更低级、经验化和行动导向的”。麻省理工的方法是融合纯科学的工程,然后在第二次世界大战后,通过与社会科学的联系来扩大工程。如今,麻省理工已经成为“深入多学科”的先驱,威廉姆斯说,他能够解决涉及科学、技术和社会的关键人类问题。海洋微生物:微小的细胞,全球影响"请不要混淆Penny Chisholm&rs.;钟爱的丙氯球菌,(海洋微生物)与磨坊细菌的运行,或更糟,与一些可怕的病原体。1985年发现的这种浮游植物原来是生物学巨星。正如Chisholm所说,&ld.;我的有机体极其重要。&rd.;Pro.coccus,大量存在于世界许多海洋中,是一个了不起的生物泵。Chisholm说,它和其他浮游植物从大气中吸收二氧化碳,参与光合作用几乎和陆地上的树木和植物一样多。“我们必须开始将海洋视为与信息合作的一部分,”Chisholm说,“微生物塑造了大气的组成、海水和地球本身的可居住性。”“微小的晶体:从科学到技术的道路”试错在Moungi Bawendi&r的进化过程中起到了很大的作用。斯奎奥的研究领域是从不同学科的研究中产生的:在20世纪70年代的能源危机中寻找太阳能;制造更小的半导体;为CD播放器等产品制造激光器。巴文迪说,物理化学家在不同的溶液中操纵微小的粒子,看到它们像雪花一样生长成不同的形状。其中一些粒子发射出不同颜色的光。研究人员研制出了荧光微球,这种由二氧化硅制成的微粒能发出特定的颜色。今天,这些小球可以用来成像血流,以检测肿瘤壁的渗漏。施加电流,球会朝不同的方向运动。Bawendi说:“这些是研究生在深夜工作时偶然发现的发现。”纳米晶体量子点激光器为计算机制造了“美丽的颜色”,生物学家可以利用这些量子点对基因分析中的DNA链进行颜色编码,也可能对生物活体进行生物医学成像。“从大铁到小硅”,在向同事们表达了诗意的敬意之后,亚历克斯·斯洛克姆(Alex Slocum)完成了他所说的“高速下载”。他谈到了通往发明的不同道路,从坐在计算机辅助设计站,到出发远足。他描绘了“纳米管喷丝头”的概念,类似于淋浴头。“Slocum”的目标是穿上第一件由纳米管制成的夏威夷衬衫。“Slocum”的工作证明了他的座右铭:“科学不必无聊。”他设计了“从硅片到瓶子的材料”,以更轻的风力涡轮机和池面节点。Slocum将设计过程视为一种享受数学乐趣的方式,这是他非常希望公布的一种方法。他追求的是一个针对小学的教育系统,旨在通过押韵、沐浴歌和电脑动画教授“系统思维和科学方法”。
课程简介: “The Multidisciplinary Forest of MIT: From Twigs to Canopy" MIT’s 19th century founders stunningly anticipated the 20th century convergence of science and technology, Rosalind Williams notes, with their emphasis on knowledge of both natural laws and applied engineering. The connection between the two different disciplines, says Williams, was “something new in history.” Scientific understanding had previously been “aristocratic, elitist, intellectual, and…speculative.” Technology had been “more lower class, empirical and action-oriented.” MIT’s approach was to meld engineering with pure science, and then, after World War 2, to broaden engineering by connecting with the social sciences. Today, MIT has become a “pioneer in deep ‘multidisciplinarity’,” says Williams, enabled to address key human problems involving science, technology and society. "Marine Microbes: Tiny Cells, Global Impact" Please don’t confuse Penny Chisholm’s beloved Prochlorococcus, (a marine microbe) with your run of the mill bacterium, or worse, with some dreaded pathogen. This species of phytoplankton, discovered in 1985, turns out to be a biological superstar. As Chisholm says, “My organism is extremely important.” Prochlorococcus, existing in abundance in much of the world’s oceans, is a remarkable biological pump. It and fellow phytoplankton suck up carbon dioxide from the atmosphere, and engage in “almost as much photosynthesis as trees and plants on land,” says Chisholm. We must begin to look at the sea “as teaming with information,” remarks Chisholm, with microbes “shaping the composition of the atmosphere, seawater and habitability of the earth itself.” “Tiny Crystals: The Path From Science to Technology" Trial and error played a large role in the evolution of Moungi Bawendi’s field, which emerged from research in different disciplines: the search for solar energy during the energy crisis of the 1970s; making smaller semiconductors; constructing lasers for products like CD players. Physical chemists, manipulating tiny particles in different solutions, saw them grow “like snowflakes” into different shapes, says Bawendi. Some of these particles emitted different colors of light. Researchers developed fluorescent microspheres, particles made out of silica, that emit specific colors. Today these tiny balls can be used to image blood flow to detect leaks in tumor walls. Apply a current and the balls go in different directions. “These are the kinds of discoveries that grad students stumble on if they work late at night,” says Bawendi. Nanocrystal quantum dot lasers make “beautiful colors for computers,” and biologists can use these quantum dots for color coding DNA chains in gene assays and possibly for biomedical imaging in living organisms. “Big Iron to Little Silicon” After a poetic tribute to his colleagues, Alex Slocum performs what he calls “a high speed download.” He speaks of the different paths to invention, from sitting at a CAD station, to heading off for a mountain hike. He sketches the idea of a “nanotube spinneret, analogous to a showerhead.” Slocum’s goal “is to wear the first Hawaiian shirt made from nanotubes.” Slocum’s work is living proof of his motto: “Science doesn’t have to be boring.” He designs “stuff from silicon wafers to bottles,” to lighter wind turbines and nodes for pool noodles. Slocum views the design process as a way to have fun with math—an approach he’d dearly like to promulgate. He’s pursuing an educational system for grade schools that aims to teach “systematic thinking and the scientific method” using rhymes, bath songs and computer animations.
关 键 词: 浮游植物; 生物医学成像; 纳米量子点激光器
课程来源: 视频讲座网
最后编审: 2019-11-22:cwx
阅读次数: 71