定向二维歧管轮廓的稳定性The Stability of the Contour of an Orientable 2-Manifold |
|
课程网址: | http://videolectures.net/mlss09us_edelsbrunner_sco2m/ |
主讲教师: | Herbert Edelsbrunner |
开课单位: | 杜克大学 |
开课时间: | 2009-07-30 |
课程语种: | 英语 |
中文简介: | 把一个实体的边界的视图看作是2流形对r^2的投影。它的明显轮廓是临界点的投影。将投影推广到2流形到r^2的光滑映射,得到的轮廓是导数不可投影点的图像。通过测量与腐蚀距离(补件之间的豪斯多夫距离)的差异,证明了轮廓是稳定的。在此过程中,我们介绍了目前已经建立的持久同调方法,包括图的稳定性,以及使用之字形模块的扩展。与德米特里·莫罗佐夫和阿米特·帕特尔合作。 |
课程简介: | Think of the view of the boundary of a solid shape as a projection of a 2-manifold to R^2. Its apparent contour is the projection of the critical points. Generalizing the projection to smooth mappings of a 2-manifold to R^2, we get the contour as the image of the points at which the derivative is not surjective. Measuring difference with the erosion distance (the Hausdorff distance between the complements), we prove that the contour is stable. Along the way, we introduce the by now well established method of persistent homology, including the stability of its diagrams, as well as an extension using zigzag modules. Joint work with Dmitriy Morozov and Amit Patel. |
关 键 词: | 计算机科学; 机器学习; 歧管学习 |
课程来源: | 视频讲座网 |
最后编审: | 2019-11-13:lxf |
阅读次数: | 48 |