0


基于无向贝叶斯传递层次的凸点估计

Convex Point Estimation using Undirected Bayesian Transfer Hierarchies
课程网址: http://videolectures.net/uai08_packer_cpe/  
主讲教师: Ben Packer
开课单位: 斯坦福大学
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
当相关的学习任务被自然地安排在一个层次结构中时,一种处理实例稀缺性的吸引人的方法是使用层次Bayes框架转移学习。由于完全贝叶斯计算可能很困难,而且计算要求很高,因此通常需要使用后验点估计来促进(相对)有效的预测。然而,分层贝叶斯框架并不总是自然而然地为这个最大的后验目标提供支持。在这项工作中,我们提出了一个无向的层次贝叶斯重构,它以相似性度量的形式依赖于先验。我们在这些相似性度量的组件上引入“转移程度”权重的概念,并展示如何在联合概率框架内自动学习它们。重要的是,对于许多学习问题,我们的重新公式化会导致一个凸目标,从而使用标准优化技术促进最佳后验点估计。此外,我们不再需要适当的优先级,允许灵活而直接地规范传输层次结构上的联合分布。我们证明了我们的框架对于两个实际任务的传输层次的一部分学习模型是有效的:使用高斯密度估计的对象形状建模和文档分类。
课程简介: When related learning tasks are naturally arranged in a hierarchy, an appealing approach for coping with scarcity of instances is that of transfer learning using a hierarchical Bayes framework. As fully Bayesian computations can be difficult and computationally demanding, it is often desirable to use posterior point estimates that facilitate (relatively) efficient prediction. However, the hierarchical Bayes framework does not always lend itself naturally to this maximum a posteriori goal. In this work we propose an undirected reformulation of hierarchical Bayes that relies on priors in the form of similarity measures. We introduce the notion of “degree of transfer” weights on components of these similarity measures, and show how they can be automatically learned within a joint probabilistic framework. Importantly, our reformulation results in a convex objective for many learning problems, thus facilitating optimal posterior point estimation using standard optimization techniques. In addition, we no longer require proper priors, allowing for flexible and straightforward specification of joint distributions over transfer hierarchies. We show that our framework is effective for learning models that are part of transfer hierarchies for two real-life tasks: object shape modeling using Gaussian density estimation and document classification.
关 键 词: 计算机科学; 贝叶斯; 算法
课程来源: 视频讲座网
最后编审: 2019-11-17:cwx
阅读次数: 34