18.369 纳米光子学中的数学方法18.369 Mathematical Methods in Nanophotonics |
|
课程网址: | http://ocw.mit.edu/courses/mathematics/18-369-mathematical-method... |
主讲教师: | Steven Johnson |
开课单位: | 麻省理工学院 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 了解固态物理在过去20年里给电磁学带来了什么。本课程研究以波长为尺度建构的介质中的电磁波的物理与数学。主题包括计算方法与从固态量子力学借用的高级代数技术相结合:线性代数与本征系统、群理论、布洛赫定理与守恒定律、微扰方法、耦合模理论,以了解从带隙到慢光再到非线性滤波器的惊人光学现象。注:本课程较早版本于《应用数学:纳米光子学中的数学方法》(18.325 Topics in Applied Mathematics: Mathematics Methods in nanphotonics, Fall 2005)发表于OCW。 |
课程简介: | Find out what solid-state physics has brought to Electromagnetism in the last 20 years. This course surveys the physics and mathematics of nanophotonics—electromagnetic waves in media structured on the scale of the wavelength. Topics include computational methods combined with high-level algebraic techniques borrowed from solid-state quantum mechanics: linear algebra and eigensystems, group theory, Bloch's theorem and conservation laws, perturbation methods, and coupled-mode theories, to understand surprising optical phenomena from band gaps to slow light to nonlinear filters. Note: An earlier version of this course was published on OCW as 18.325 Topics in Applied Mathematics: Mathematical Methods in Nanophotonics, Fall 2005. |
关 键 词: | 线性代数; 麦克斯韦方程组; 数值方法; 时间和频域摄动理论计算; 耦合模式理论; 波导理论; 绝热 |
课程来源: | 麻省理工学院公开课 |
最后编审: | 2018-06-24:cmh |
阅读次数: | 85 |