0


隐变量稀疏线性模型的逼近与推理

Approximation and Inference using Latent Variable Sparse Linear Models
课程网址: http://videolectures.net/abi07_wipf_aiu/  
主讲教师: David P Wipf
开课单位: 加利福尼亚大学
开课时间: 2008-02-01
课程语种: 英语
中文简介:
近年来,人们引入了各种贝叶斯方法,利用具有稀疏先验的线性模型进行近似推理。我们关注四种利用稀疏分布固有的潜在结构来执行的方法:(i)标准映射估计,(ii)超参数映射估计(证据最大化),(iii)使用阶乘后验的变分贝叶斯,(iv)使用凸下界的局部变分近似。所有这些方法都可以用来计算高斯后验逼近的基础上的充分分布;然而,这些近似的确切性质往往是不清楚的,因此确定哪种算法和稀疏先验是一个具有挑战性的任务。我们不像有时那样,根据完全贝叶斯模型的可信性来证明先前的选择和建模假设,而是根据每种方法产生的实际成本函数进行评估。为此,我们讨论了一个包含上述所有内容的共同目标函数,然后简要评估了它在三个典型应用方面的特性:(i)寻找最大稀疏信号表示,(ii)预测建模(如RVMs)和(iii)主动学习/实验设计。这些问题的要求可以是非常不同的,可以导致非常有限的选择稀疏的先验和最终近似采用。一般来说,我们发现最好的近似模型往往与最似是而非的完整模型不相符合。最后,我们考虑了稀疏线性模型的几个扩展,包括分类、协方差分量估计和非负约束的引入。虽然处理这些问题所需要的时刻的封闭形式表达式可能是棘手的,但是我们展示了使用简单辅助函数转换到对偶空间的替代实现。初步结果表明,与现有方法相比,有较大改进的可能。
课程简介: A variety of Bayesian methods have recently been introduced for performing approximate inference using linear models with sparse priors. We focus on four methods that capitalize on latent structure inherent in sparse distributions to perform: (i) standard MAP estimation, (ii) hyperparameter MAP estimation (evidence maximization), (iii) variational Bayes using a factorial posterior, and (iv) local variational approximation using convex lower bounding. All of these approaches can be used to compute Gaussian posterior approximations to the underlying full distribution; however, the exact nature of these approximations is frequently unclear and so it is a challenging task to determine which algorithm and sparse prior are appropriate. Rather than justifying prior selections and modeling assumptions based on the credibility of the full Bayesian model as is sometimes done, we base evaluations on the actual cost functions that emerge from each method. To this end we discuss a common objective function that encompasses all of the above and then briefly assess its properties with respect to three representative applications: (i) finding maximally sparse signal representations, (ii) predictive modeling (e.g., RVMs), and (iii) active learning/ experimental design. The requirements of these problems can be quite different and can lead to very restricted choices for the sparse prior and final approximation adopted. In general, we find that the best approximate model often does not correspond with the most plausible full model. Finally, we consider several extensions of the sparse linear model, including classification, covariance component estimation, and the incorporation of non-negativity constraints. While closed-form expressions for the moments needed for dealing with these problems may be intractable, we show an alternative implementation that involves transforming to a dual space using simple auxiliary functions. Preliminary results show that substantial improvement is possible over existing methods.
关 键 词: 隐变量; 稀疏线性模型; 推理
课程来源: 视频讲座网
最后编审: 2019-11-02:lxf
阅读次数: 34