0


基于视觉美学的图像质量评价与增强框架

A Coherent Framework for Photo-Quality Assessment and Enhancement based on Visual Aestheticsp
课程网址: http://videolectures.net/acmmm2010_bhattacharya_cfp/  
主讲教师: Subhabrata Bhattacharya
开课单位: 中央佛罗里达大学
开课时间: 2011-02-01
课程语种: 英语
中文简介:
我们提供了一个交互式应用程序,用户可以使用空间重组来改善他们的数字照片的视觉美学。不像以前的工作专注于照片质量评估或照片编辑的交互式工具,我们使用户能够作出关于改进照片构图的明智决定,并在单个框架中实现它们。具体来说,用户交互地选择一个前台对象,系统给出了它可以移动到哪里的建议,这种方式优化了学习到的美学度量,同时遵守语义约束。对于缺乏清晰前景对象的摄影构图,我们的工具为用户提供裁剪或扩展建议,以提高其美学质量。我们学习了一个支持向量回归模型,用于从用户数据中获取图像美学,并试图在重构过程中优化这个度量。我们没有规定全自动的解决方案,而是允许用户引导的对象分割和内画,以确保最终的照片符合用户的标准。我们的方法在预测未评级图像的吸引力方面达到了86%的准确率,与它们各自的人类排名相比。此外,73%使用我们的工具推荐的图片在人类评价者看来比原始图片更有吸引力。
课程简介: We present an interactive application that enables users to improve the visual aesthetics of their digital photographs using spatial recomposition. Unlike earlier work that focuses either on photo quality assessment or interactive tools for photo editing, we enable the user to make informed decisions about improving the composition of a photograph and to implement them in a single framework. Specifically, the user interactively selects a foreground object and the system presents recommendations for where it can be moved in a manner that optimizes a learned aesthetic metric while obeying semantic constraints. For photographic compositions that lack a distinct foreground object, our tool provides the user with cropping or expanding recommendations that improve its aesthetic quality. We learn a support vector regression model for capturing image aesthetics from user data and seek to optimize this metric during recomposition. Rather than prescribing a fully-automated solution, we allow user-guided object segmentation and inpainting to ensure that the final photograph matches the user’s criteria. Our approach achieves 86% accuracy in predicting the attractiveness of unrated images, when compared to their respective human rankings. Additionally, 73% of the images recomposited using our tool are ranked more attractive than their original counterparts by human raters.
关 键 词: 视觉美学; 图像质量; 框架
课程来源: 视频讲座网
最后编审: 2019-10-31:lxf
阅读次数: 53