奇异扩散方程:极小随机解Singular Diffusion Equations: Minimally Stochastic Solution Schemes |
|
课程网址: | http://videolectures.net/acs07_burgeth_sde/ |
主讲教师: | Bernhard Burgeth |
开课单位: | 萨尔兰大学 |
开课时间: | 2007-12-17 |
课程语种: | 英语 |
中文简介: | 全变分(TV)和平衡前向后(BFB)扩散是奇异扩散过程的常见例子:有限消光时间,实验观察到的创建分段常数区域的趋势,以及参数的缺失使它们成为非常有趣的图像处理工具。然而,适当的数值处理仍然是一个挑战。在此基础上,提出了一种基本奇异方程的最小随机方法。它依赖于两像素信号的解析解和随机四舍五入。这引入了通过整数算法的正则化,并且不需要对扩散率进行任何限制。实验证明了该方法的良好性能。 |
课程简介: | Total variation (TV) and balanced forward-backward (BFB) diffusion are popular examples of singular diffusion processes: Finite extinction time, the experimentally observed tendency to create piecewise constant regions, and the absence of parameters makes them very interesting image processing tools. However, their appropriate numerical treatment is still a challenge. In this contribution a minimally stochastic approach to the underlying singular equations is presented. It relies on analytical solutions of two-pixel signals and stochastic rounding. This introduces regularisation via integer arithmetic and does not require any limits on the diffusivity. Experiments demonstrate the favourable performance of the proposed probabilistic method. |
关 键 词: | 奇异扩散方程; 随机解 |
课程来源: | 视频讲座网 |
最后编审: | 2019-11-01:lxf |
阅读次数: | 63 |