归一化核加权随机测度Normalized kernel-weighted random measures |
|
课程网址: | http://videolectures.net/aispds08_griffin_nkwrm/ |
主讲教师: | Jim Griffin |
开课单位: | 肯特大学 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 本文讨论了一类广泛的概率测度值过程,这些过程可作为具有时变、时变或协变依赖分布的问题的非参数先验。它们是由归一化相关随机度量构成的,这些随机度量是固定的,有一个已知的边缘过程。依赖关系是用内核(一种在空间建模中非常流行的方法)来建模的。这些思想将Griffin(2007)(在时间序列问题中使用指数核)推广到任意核函数。我们将讨论计算问题,并以金融时间序列中的例子说明这些观点。 |
课程简介: | This talk discusses a wide class of probability measure-valued processes to be used as nonparametric priors for problems with time-varying, patially-varying or covariate-dependent distributions. They are constructed by normalizing correlated random measures, which are stationary and have a known marginal process. Dependence is modelled using kernels (a method that has become popular in spatial modelling). The ideas extend Griffin (2007), which used an exponential kernel in time series problems, to arbitrary kernel functions. Computational issues will be discussed and the ideas will be illustrated by examples in financial time series. |
关 键 词: | 归一化; 加权; 随机; 测度 |
课程来源: | 视频讲座网 |
最后编审: | 2019-10-30:cwx |
阅读次数: | 45 |