连续时间非线性状态空间模型的变分推理与学习Variational inference and learning for continuous-time nonlinear state-space models |
|
课程网址: | http://videolectures.net/aispds08_raiko_vil/ |
主讲教师: | Tapani Raiko |
开课单位: | 阿尔托大学 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 连续时间随机动力模型的推理是一个具有挑战性的问题。为了补充现有的基于采样的方法,变分方法最近被开发出来解决这个问题。我们的方法通过离散化来解决变分连续时间推理问题,本质上将其简化为离散时间问题。我们的框架使模型的学习和推理更加容易。其他扩展,如异方差模型,在这个框架中也相对容易考虑。 |
课程简介: | Inference in continuous-time stochastic dynamical models is a challenging problem. To complement existing sampling-based methods, variational methods have recently been developed for this problem. Our approach solves the variational continuous-time inference problem by discretisation that essentially reduces it to a discrete-time problem. Our framework makes learning the model in addition to inference easy. Other extensions such as heteroscedastic models are also relatively easy to consider within this framework. |
关 键 词: | 连续时间; 非线性状态; 空间模型; 变分推理 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-31:nkq |
阅读次数: | 32 |