对于ML II型参数估计的非线性扩散的一种有效的蒙特卡洛算法An efficient Monte-Carlo algorithm for the ML-Type II parameter estimation of nonlinear diffusions |
|
课程网址: | http://videolectures.net/aispds08_shen_emca/ |
主讲教师: | Yuan Shen |
开课单位: | 阿斯顿大学 |
开课时间: | 2008-08-05 |
课程语种: | 英语 |
中文简介: | 非线性扩散的数学框架在自然现象建模中发挥着重要作用。近年来,人们对这类随机动力系统的推理方法进行了大量的研究。状态估计和参数估计都很重要。将最先进的混合蒙特卡罗方法应用于非线性扩散的状态估计。在参数估计中,通常采用数据增强策略。相应地,状态和参数在Gibbs-sampler设置中采样。然而,据报道这种蒙特卡罗算法混合性能很差。这是由于状态和参数样本之间存在很强的相关性。在本文中,我们提出了一种极大似然(ML)类型的参数估计方法。结合统计物理中的王-兰道算法,证明了该算法的精确性和有效性。 |
课程简介: | The mathematical framework of non-linear diffusions has been playing an important role in modelling natural phenomena. Recently, much efforts have been made in developing inferential methods for such stochastic dynamical systems. Both state- and parameter estimation are of interests. The state-of-art Hybrid-Monte Carlo method has been applied to state estimation of non-linear diffusions. For parameter estimation, the data augmentation strategy is often adopted. Accordingly, state and parameters are sampled in a Gibbs-sampler setting. However, it has been reported that such a Monte-Carlo algorithm has very poor mixing property. This is due to strong correlations between state and parameter samples. In this paper, we propose a maximal likelihood (ML) type II approach to parameter estimation. Equipped with the Wang-Landau algorithm from statistical physics, the novel algorithm is shown to be both accurate and efficient. |
关 键 词: | ML II型参数; 非线性扩散; 蒙特卡洛算法 |
课程来源: | 视频讲座网 |
最后编审: | 2019-10-31:lxf |
阅读次数: | 77 |