伯恩斯坦推动实证Empirical Bernstein boosting |
|
课程网址: | http://videolectures.net/aistats2010_shivaswamy_ebb/ |
主讲教师: | Pannaga Shivaswamy |
开课单位: | 哥伦比亚大学 |
开课时间: | 2010-06-03 |
课程语种: | 英语 |
中文简介: | 包含方差信息的浓度不等式(如Bernstein或Bennett不等式)通常比忽略方差的浓度不等式(如Hoeffding不等式)更为严格。然而,许多用于分类问题的机器学习算法,如AdaBoost和支持向量机(SVMs),广泛使用Hoeffding不等式来证明经验风险最小化及其变体。本文提出了一种基于最近引入的样本方差惩罚原理的改进算法。这个框架产生了一种高效的算法,它和AdaBoost一样容易实现,同时产生了严格的泛化。在大量数据集上的实验表明,与AdaBoost相比,性能有了显著提高。本文表明,样本方差惩罚是一种可行的替代经验风险最小化的方法。 |
课程简介: | Concentration inequalities that incorporate variance information (such as Bernstein's or Bennett's inequality) are often significantly tighter than counterparts (such as Hoeffding's inequality) that disregard variance. Nevertheless, many state of the art machine learning algorithms for classification problems like AdaBoost and support vector machines (SVMs) extensively use Hoeffding's inequalities to justify empirical risk minimization and its variants. This article proposes a novel boosting algorithm based on a recently introduced principle--sample variance penalization--which is motivated from an empirical version of Bernstein's inequality. This framework leads to an efficient algorithm that is as easy to implement as AdaBoost while producing a strict generalization. Experiments on a large number of datasets show significant performance gains over AdaBoost. This paper shows that sample variance penalization could be a viable alternative to empirical risk minimization. |
关 键 词: | 伯恩斯坦; 实证 |
课程来源: | 视频讲座网 |
最后编审: | 2021-01-31:nkq |
阅读次数: | 59 |