学习专业知识建模,当每个人都知道一些东西Modeling annotator expertise: Learning when everybody knows a bit of something |
|
课程网址: | http://videolectures.net/aistats2010_yan_mae/ |
主讲教师: | Yan Yan |
开课单位: | 美国东北大学 |
开课时间: | 2010-06-03 |
课程语种: | 英语 |
中文简介: | 在机器学习和数据挖掘中,来自多个标记源的监督学习是一个越来越重要的问题。当注释器可能不可靠(标签是有噪声的)时,本文开发了一种概率方法来解决这个问题,但它们的专业知识也取决于它们观察到的数据(注释器可能知道输入空间的不同部分)。也就是说,注释器在整个任务域中可能不一致地准确(或不准确)。提出的方法生成分类和注释器模型,使我们能够提供对真正标签和注释器变量专业知识的估计。我们对所提出的模型在不同的场景下进行了分析,并通过实验表明,注释器的专业知识在实际任务中确实会有所不同,而且与之前介绍的只考虑一般注释器特性的多注释器方法相比,所提出的方法具有明显的优势。 |
课程简介: | Supervised learning from multiple labeling sources is an increasingly important problem in machine learning and data mining. This paper develops a probabilistic approach to this problem when annotators may be unreliable (labels are noisy), but also their expertise varies depending on the data they observe (annotators may have knowledge about different parts of the input space). That is, an annotator may not be consistently accurate (or inaccurate) across the task domain. The presented approach produces classification and annotator models that allow us to provide estimates of the true labels and annotator variable expertise. We provide an analysis of the proposed model under various scenarios and show experimentally that annotator expertise can indeed vary in real tasks and that the presented approach provides clear advantages over previously introduced multi-annotator methods, which only consider general annotator characteristics. |
关 键 词: | 专业建模; 机器学习; 数据挖掘 |
课程来源: | 视频讲座网 |
最后编审: | 2021-09-20:zyk |
阅读次数: | 34 |