0


通过变换编译进行概率规划语言的轻量级实现

Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation
课程网址: http://videolectures.net/aistats2011_wingate_lightweight/  
主讲教师: David Wingate
开课单位: 麻省理工学院
开课时间: 信息不详。欢迎您在右侧留言补充。
课程语种: 英语
中文简介:
我们描述了一种用简单的MCMC推理引擎将任意编程语言转换成概率编程语言的通用方法。程序中的随机选择是命名。与他们在执行跟踪中的位置有关的信息;这些名称与保存随机变量值的数据库一起使用,以在执行跟踪空间中实现MCMC推断。我们使用轻量级源到源编译器对命名信息进行编码。我们的方法使我们能够重用现有的基础结构(编译器、剖析器等),并且只需要最少的额外代码,这就意味着使用低开发开销的快速模型。我们在两种语言(一种函数式语言和一种命令式语言)和随机Matlab(一种新的开源语言)上演示了这种技术:Bher,一种教会语言的编译版本,它消除了最初的教会实现的解释开销。
课程简介: We describe a general method of transforming arbitrary programming languages into probabilistic programming languages with straightforward MCMC inference engines. Random choices in the program are “named” with information about their position in an execution trace; these names are used in conjunction with a database holding values of random variables to implement MCMC inference in the space of execution traces. We encode naming information using lightweight source-to-source compilers. Our method enables us to reuse existing infrastructure (compilers, profilers, etc.) with minimal additional code, implying fast models with low development overhead. We illustrate the technique on two languages, one functional and one imperative: Bher, a compiled version of the Church language which eliminates interpretive overhead of the originalMIT-Church implementation, and Stochastic Matlab, a new open-source language.
关 键 词: 变换编译; 概率规划; 轻量级
课程来源: 视频讲座网
最后编审: 2019-10-30:cwx
阅读次数: 5