首页物理学
   首页数学
   首页自然科学
0


稀疏建模:统一理论与主题成像

Sparse modeling: some unifying theory and “topic-imaging”
课程网址: http://videolectures.net/aistats2011_yu_modeling/  
主讲教师: Bin Yu
开课单位: 加州大学伯克利分校
开课时间: 2011-05-06
课程语种: 英语
中文简介:
信息技术使科学、工程、社会科学、金融等领域的海量数据得以收集。从海量高维数据中提取有用信息是当今统计研究和实践的重点。统计机器学习在正则化预测方面取得了广泛的成功后,解释性越来越受到关注,稀疏性成为统计机器学习的代理。稀疏建模方法(Lasso)兼具正则化和稀疏性的优点,引起了理论研究和数据建模的广泛关注。
课程简介: Information technology has enabled collection of massive amounts of data in science, engineering, social science, finance and beyond. Extracting useful information from massive and high-dimensional data is the focus of today's statistical research and practice. After broad success of statistical machine learning on prediction through regularization, interpretability is gaining attention and sparsity is being used as its proxy. With the virtues of both regularization and sparsity, sparse modeling methods (e.g., Lasso) has attracted much attention for theoretial research and for data modeling.
关 键 词: 稀疏建模; 统一理论; 主题成像
课程来源: 视频讲座网
最后编审: 2021-01-28:nkq
阅读次数: 46