首页数学
   首页经济学
0


利用市场机制的多策略交易

Multi-Strategy Trading Utilizing Market Regimes
课程网址: http://videolectures.net/amlcf09_ramamoorthy_mstumr/  
主讲教师: Subramanian Ramamoorthy
开课单位: 爱丁堡大学
开课时间: 2009-08-21
课程语种: 英语
中文简介:
本视频讨论了动态分配资本到交易策略组合中的问题。配置应该是稳健的,分配给交易策略的资本应该反映出对该策略在当前市场条件下所能获得的预期利润的信心。好的交易策略利用了反复出现的市场动态,这种动态在某些时期可能比在其他时期更为普遍。事实上,制度的概念是金融市场的根本,许多研究都集中在发现制度的转变上。在本文中,我们考虑由一组在给定时间段内表现相似的交易策略所定义的制度。我们将同一策略的不同参数化为不同的基本策略。交易问题是选择一个分布在地面集,将取得良好的业绩,在当前的时间段。我们通常选择的支持分布大于一个反映了许多层面的不确定性,并允许风险和回报驱动因素的多样化。我们提供了一个简单的算法,根据经验来选择分布,这些分布通常与oracle的性能接近,oracle从地面集合中选择每个时期的最佳交易策略。为此,我们明确地将策略定义为策略的子集。初始阶段是排除大量与处理子集的组合爆炸无关的机制。在算法的训练阶段,我们选择随机的时间窗,学习两个函数:第一个是classifyMarket,它是for (probability) regime classification,它将市场数据作为输入,在不同的制度下产生一个分布;第二种是stFuncDist,它为每一种策略生成一个分布,在这种分布中,被认为在该策略中有效的策略被赋予更高的概率。我们使用的主要工具是蒙特卡罗置换测试和概率的增量加权。在交易阶段,我们使用的是一种标准的直接交易模式。的方法。在样本内时期,我们使用交易结果进行制度分类,在样本外时期,我们根据样本内时期和当前stFuncDist确定的组合分类市场进行资本配置。这是一个简单的算法,但却是一个经验上成功的算法——这是我们报告的一个迹象。该方法与顺序蒙特卡罗方法[3]有一些相似之处,即它顺序地重新加权假设(在我们的例子中,关于策略的适用性)。在最后一节中,我们讨论了一种建立战略适合度的时间演化模型的方法,旨在刻画制度特征。这可以用于指导我们在现有设置中选择样本外周期的样本内。我们在这个方向上提出了初步的结果。在目前的工作中,我们正试图对基本算法进行扩展,以便更直接地利用序列蒙特卡罗方法,例如基于粒子滤波的策略适应度估计,该方法可以通过排列测试来粗略地完成上述工作。
课程简介: This video considers the problem of dynamically allocating capital to a portfolio of trading strategies. The allocation should be robust, and the capital allocated to a trading strategy should reflect the confidence in the expected profit that the strategy will make in current market conditions. Good trading strategies exploit recurring market dynamics that can be more prevalent in some time periods than in others. Indeed, the concept of regimes is fundamental to financial markets, and much research has focused on the detection of regime shifts. In this paper, we consider a regime as defined by a set of trading strategies that exhibit similar performance in a given time period. We consider different parameterizations of the same strategy as distinct in our ground set of strategies. The trading problem is to pick a distribution over the ground set that will achieve good performance in the current time period. That we typically choose a distribution of support greater than one reflects uncertainty on many levels, and allows diversification of risk and return drivers. We provide a simple algorithm that empirically picks distributions that often approximate the performance of an oracle that picks the best trading strategy in each period from the ground set. To this end, we explicitly define regimes as subsets of strategies. An initial phase is to rule out a large number of regimes as irrelevant to counter the combinatorial explosion of dealing with subsets. In the training phase of our algorithm, we pick random time windows and learn two functions: the first, classifyMarket, is for (probabilistic) regime classification and takes as input the market data and produces a distribution over regimes; the second, stFuncDist, produces for each regime a distribution over strategies, where strategies believed to be good in that regime are assigned higher probability. The main tools we use are Monte Carlo permutation tests and incremental re-weighting of probabilities. In the trading phase we use a standard “walk-forward” approach. In the in-sample period we use the trading results for regime classification, and in the out-of-sample period we allocate capital according to the combination classifyMarket determined from the in-sample period and the current stFuncDist. This is a simple algorithm, but an empirically successful one - an indication of which we report. The approach bears some similarity to Sequential Monte Carlo methods [3] in that it sequentially re-weights hypotheses (in our case, regarding suitability of strategies). In the final section, we discuss an approach to modelling the time evolution of strategy fitnesses with a view towards characterizing regimes. This could be used to guide our choice of in-sample of out-of-sample periods in the existing setup. We present preliminary results in this direction. In current work, we are trying to extend the basic algorithm in such a way that we can more directly make use of the Sequential Monte Carlo method, such as particle filter based estimation of strategy fitness that might parsimoniously accomplish what is done above with permutation tests.
关 键 词: 市场机制; 多策略交易
课程来源: 视频讲座网
最后编审: 2021-02-16:nkq
阅读次数: 63