0


脑-机接口的脑电图特征表示和相关的空间滤波器

EEG Feature Representations and Associated Spatial Filters for Brain-Computer Interfaces
课程网址: http://videolectures.net/bbci2012_lotte_eeg_feature/  
主讲教师: Fabien Lotte
开课单位: 波尔多-苏德乌伊斯特酒店
开课时间: 2012-12-03
课程语种: 英语
中文简介:
在设计基于脑电图的脑机接口(BCI)时,特征提取是关键的信号处理环节。它由许多描述脑电图信号所包含的相关信息的值组成。本讲座将首先介绍用于表示脑电图信号的主要特征,如运动图像或P300。然而,由于体积传导的原因,脑电图信号固有的空间分辨率较低,其所包含的信息一般通过多个通道传播。这使得从每个脑电图通道中单独提取的特征不像可能的那么有效。为了缓解这一问题,提高信噪比,需要使用空间滤波算法,从多个渠道收集相关信息。因此,本课程也将介绍空间滤波器的算法,可以用于每个特征的表示。这将包括反解、公共空间模式(CSP)和变体,或xDAWN算法等。
课程简介: When designing EEG-based Brain-Computer Interfaces (BCI), a crucial signal processing component is the feature extraction step. It consists in representing EEG signals by a number of values that describe the relevant information they contain. This lecture will first expose the main features that are used to represent EEG signals such as Motor Imagery or P300. However, due to volume conduction, EEG signals inherently have a low spatial resolution, and the information they contain is generally spread over several channels. This makes features extracted individually from each EEG channel not as efficient as it could be. To alleviate this issue and improve the signal-to-noise ratio, it is important to use spatial filtering algorithms, in order to gather the relevant information from multiple channels. Therefore, this lecture will also present the spatial filter algorithms that can be used for each feature representation. This will include inverse solutions, Common Spatial Patterns (CSP) and variants, or the xDAWN algorithm, among other.
关 键 词: 脑电图; 脑机接口(BCI); 通道传播; 空间滤波器; 公共空间模式(CSP)
课程来源: 视频讲座网
最后编审: 2019-10-22:cwx
阅读次数: 60