0


Stixmentation - 基于概率混合的交通场景标注

Stixmentation - Probabilistic Stixel based Traffic Scene Labeling
课程网址: http://videolectures.net/bmvc2012_erbs_stixmentation/  
主讲教师: Friedrich Erbs
开课单位: 戴姆勒公司
开课时间: 2012-10-09
课程语种: 英语
中文简介:
从移动平台上检测车辆、行人或自行车等移动物体是驾驶员辅助和安全系统中最具挑战性和最重要的任务之一。为此,我们提出了一种基于动态体素世界的多类交通场景分割方法,一种高效的超像素对象表示方法。在这种方法中,每个Stixel都分配给量化的机动运动类,比如迎面而来,或者向左移动或者静态背景。该公式在一个概率条件随机场(CRF)框架中集成了多种三维和运动特征以及时空先验知识。在各种复杂、混乱的城市交通场景中,定量评价了该方法的实时性。实验结果对城市交通场景进行了高度精确的分割,无需人工参数调整。
课程简介: The detection of moving objects like vehicles, pedestrians or bicycles from a mobile platform is one of the most challenging and most important tasks for driver assistance and safety systems. For this purpose, we present a multi-class traffic scene segmentation approach based on the Dynamic Stixel World, an efficient super-pixel object representation. In this approach, each Stixel is assigned either to a quantized maneuver motion class like oncoming, or left-moving or to static background. The formulation integrates multiple 3D and motion features as well as spatio-temporal prior knowledge in a probabilistic conditional random field (CRF) framework. The real-time capable method is evaluated quantitatively in various challenging, cluttered urban traffic scenes. The experimental results yield highly accurate segmentation of urban traffic scenarios without the need for any manual parameter adjustments.
关 键 词: 交通场景分割; 城市交通场景
课程来源: 视频讲座网
最后编审: 2020-09-28:heyf
阅读次数: 54