我们需要更多的训练数据还是更好的对象检测模型?Do We Need More Training Data or Better Models for Object Detection? |
|
课程网址: | http://videolectures.net/bmvc2012_fowlkes_object_detection/ |
主讲教师: | Charless C. Fowlkes |
开课单位: | 加州大学欧文分校 |
开课时间: | 信息不详。欢迎您在右侧留言补充。 |
课程语种: | 英语 |
中文简介: | 用于训练目标识别系统的数据集正在稳步增长。本文研究的问题是,现有的检测器是否会随着数据的增长而不断改进,或者模型是否由于模型的复杂性有限以及与它们所处的特征空间相关的贝叶斯风险而接近饱和。我们专注于流行的模式扫描窗口模板定义的梯度定向特征,训练与判别分类器。我们研究混合模板的性能作为模板数量(复杂性)和培训数据量的函数。我们发现额外的数据确实有帮助,但只有通过正确的正则化和处理有噪声的例子或超出标准;在训练数据中。令人惊讶的是,问题领域无关的混合模型的性能似乎很快就饱和了(每个模板有10个模板和100个积极的培训示例)。然而,组合混合(通过组合部件实现)可以提供更好的性能,因为它们在模板之间共享参数,并且可以合成在培训期间没有遇到的新模板。这表明,利用线性分类器和现有的特征空间,通过改进表示和学习算法,仍有提高性能的空间。 |
课程简介: | Datasets for training object recognition systems are steadily growing in size. This paper investigates the question of whether existing detectors will continue to improve as data grows, or if models are close to saturating due to limited model complexity and the Bayes risk associated with the feature spaces in which they operate. We focus on the popular paradigm of scanning-window templates defined on oriented gradient features, trained with discriminative classifiers. We investigate the performance of mixtures of templates as a function of the number of templates (complexity) and the amount of training data. We find that additional data does help, but only with correct regularization and treatment of noisy examples or “outliers” in the training data. Surprisingly, the performance of problem domain-agnostic mixture models appears to saturate quickly (10 templates and 100 positive training examples per template). However, compositional mixtures (implemented via composed parts) give much better performance because they share parameters among templates, and can synthesize new templates not encountered during training. This suggests there is still room to improve performance with linear classifiers and the existing feature space by improved representations and learning algorithms. |
关 键 词: | 对象识别系统; 鉴别分类器; 算法 |
课程来源: | 视频讲座网 |
最后编审: | 2019-10-22:cwx |
阅读次数: | 77 |