0


用于人体检测的潜在SVM,具有局部仿射变形场

Latent SVMs for Human Detection with a Locally Affine Deformation Field
课程网址: http://videolectures.net/bmvc2012_ladicky_deformation_field/  
主讲教师: L’ubor Ladický
开课单位: 科英布拉大学
开课时间: 2012-10-09
课程语种: 英语
中文简介:
用于人类检测和定位的方法通常使用梯度直方图(HOG),对于低方差的对齐数据很有效。对于基于HOG的方法,虽然分辨率较高的模板可以捕获更多的细节,但是它们的使用并不能带来更好的性能,因为即使数据中的一个小的差异也可能导致判别边缘落入不同的相邻单元。为了克服这些问题,Felzenszwalb等人提出了一种基于星图部分的固定刚性部分的形变模型,该模型可以捕捉数据中的这些变化,从而得到最先进的结果。在此工作的激励下,我们提出了一个具有局部仿射变形场的潜在变形模板模型,该模型在不过度拟合数据的情况下,可以使模板产生更一般、更自然的变形;同时也为这类问题提供了一种新的推理方法。这个变形模型为我们提供了一种测量训练样本之间距离的方法,我们展示了如何将该方法用于将问题聚类为几种模式,以对应不同类型的对象、观点或姿态。我们的方法在计算开销小的情况下比最先进的方法有了显著的改进。
课程简介: Methods for human detection and localization typically use histograms of gradients (HOG) and work well for aligned data with low variance. For methods based on HOG despite the fact the higher resolution templates capture more details, their use does not lead to a better performance, because even a small variance in the data could cause the discriminative edges to fall into different neighbouring cells. To overcome these problems, Felzenszwalb et al. proposed a star-graph part based deformable model with a fixed number of rigid parts, which could capture these variations in the data leading to state-ofthe- art results. Motivated by this work, we propose a latent deformable template model with a locally affine deformation field, which allows for more general and more natural deformations of the template while not over-fitting the data; and we also provide a novel inference method for this kind of problem. This deformation model gives us a way to measure the distances between training samples, and we show how this can be used to cluster the problem into several modes, corresponding to different types of objects, viewpoints or poses. Our method leads to a significant improvement over the state-of-the-art with small computational overhead.
关 键 词: 人类检测; 梯度直方图; HOG
课程来源: 视频讲座网
最后编审: 2020-09-28:heyf
阅读次数: 65